Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Mol Cell ; 68(3): 626-640.e5, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29107535

ABSTRACT

Eukaryotic cells spend most of their life in interphase of the cell cycle. Understanding the rich diversity of metabolic and genomic regulation that occurs in interphase requires the demarcation of precise phase boundaries in situ. Here, we report the properties of two genetically encoded fluorescence sensors, Fucci(CA) and Fucci(SCA), which enable real-time monitoring of interphase and cell-cycle biology. We re-engineered the Cdt1-based sensor from the original Fucci system to respond to S phase-specific CUL4Ddb1-mediated ubiquitylation alone or in combination with SCFSkp2-mediated ubiquitylation. In cultured cells, Fucci(CA) produced a sharp triple color-distinct separation of G1, S, and G2, while Fucci(SCA) permitted a two-color readout of G1 and S/G2. Fucci(CA) applications included tracking the transient G1 phase of rapidly dividing mouse embryonic stem cells and identifying a window for UV-irradiation damage in S phase. These results show that Fucci(CA) is an essential tool for quantitative studies of interphase cell-cycle regulation.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Cycle/physiology , Cullin Proteins/metabolism , Embryonic Stem Cells/physiology , Fluorescent Dyes/metabolism , Luminescent Proteins/metabolism , Animals , Cell Cycle Proteins/genetics , Cells, Cultured , Cullin Proteins/genetics , Embryonic Stem Cells/cytology , Genes, Reporter , HeLa Cells , Humans , Luminescent Proteins/genetics , Mice
3.
Nat Neurosci ; 18(10): 1518-29, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26368944

ABSTRACT

Optical clearing methods facilitate deep biological imaging by mitigating light scattering in situ. Multi-scale high-resolution imaging requires preservation of tissue integrity for accurate signal reconstruction. However, existing clearing reagents contain chemical components that could compromise tissue structure, preventing reproducible anatomical and fluorescence signal stability. We developed ScaleS, a sorbitol-based optical clearing method that provides stable tissue preservation for immunochemical labeling and three-dimensional (3D) signal rendering. ScaleS permitted optical reconstructions of aged and diseased brain in Alzheimer's disease models, including mapping of 3D networks of amyloid plaques, neurons and microglia, and multi-scale tracking of single plaques by successive fluorescence and electron microscopy. Human clinical samples from Alzheimer's disease patients analyzed via reversible optical re-sectioning illuminated plaque pathogenesis in the z axis. Comparative benchmarking of contemporary clearing agents showed superior signal and structure preservation by ScaleS. These findings suggest that ScaleS is a simple and reproducible method for accurate visualization of biological tissue.


Subject(s)
Alzheimer Disease/pathology , Brain/pathology , Imaging, Three-Dimensional/methods , Neuroimaging/methods , Tissue Fixation/methods , Aged , Aged, 80 and over , Animals , Female , Humans , Image Processing, Computer-Assisted , Male , Mice , Mice, Inbred C57BL , Middle Aged , Plaque, Amyloid/pathology
4.
Development ; 140(22): 4624-32, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24154524

ABSTRACT

The majority of mammalian somatic cells maintain a diploid genome. However, some mammalian cell types undergo multiple rounds of genome replication (endoreplication) as part of normal development and differentiation. For example, trophoblast giant cells (TGCs) in the placenta become polyploid through endoreduplication (bypassed mitosis), and megakaryocytes (MKCs) in the bone marrow become polyploid through endomitosis (abortive mitosis). During the normal mitotic cell cycle, geminin and Cdt1 are involved in 'licensing' of replication origins, which ensures that replication occurs only once in a cell cycle. Their protein accumulation is directly regulated by two E3 ubiquitin ligase activities, APC(Cdh1) and SCF(Skp2), which oscillate reciprocally during the cell cycle. Although proteolysis-mediated, oscillatory accumulation of proteins has been documented in endoreplicating Drosophila cells, it is not known whether the ubiquitin oscillators that control normal cell cycle transitions also function during mammalian endoreplication. In this study, we used transgenic mice expressing Fucci fluorescent cell-cycle probes that report the activity of APC(Cdh1) and SCF(Skp2). By performing long-term, high temporal-resolution Fucci imaging, we were able to visualize reciprocal activation of APC(Cdh1) and SCF(Skp2) in differentiating TGCs and MKCs grown in our custom-designed culture wells. We found that TGCs and MKCs both skip cytokinesis, but in different ways, and that the reciprocal activation of the ubiquitin oscillators in MKCs varies with the polyploidy level. We also obtained three-dimensional reconstructions of highly polyploid TGCs in whole, fixed mouse placentas. Thus, the Fucci technique is able to reveal the spatiotemporal regulation of the endoreplicative cell cycle during differentiation.


Subject(s)
Endoreduplication , Mammals/embryology , Ubiquitin/metabolism , Animals , Cell Survival , Cells, Cultured , Female , Megakaryocytes/cytology , Megakaryocytes/metabolism , Mice , Mice, Transgenic , Mitosis , Molecular Imaging , Placenta/cytology , Placenta/metabolism , Pregnancy , Reproducibility of Results , Trophoblasts/cytology , Trophoblasts/metabolism
5.
Biochem Biophys Res Commun ; 392(3): 307-10, 2010 Feb 12.
Article in English | MEDLINE | ID: mdl-20059969

ABSTRACT

We have developed a regulator-free device that enables long-term incubation of mammalian cells for epi-fluorescence imaging, based on a concept that the size of sample to be gassed and heated is reduced to observation scale. A poly(dimethylsiloxane) block stamped on a coverslip works as a long-lasting supplier of CO(2)-rich gas to adjust bicarbonate-containing medium in a tiny chamber at physiological pH, and an oil-immersion objective warms cells across the coverslip. A time-lapse imaging experiment using HeLa cells stably expressing fluorescent cell-cycle indicators showed that the cells in the chamber proliferated with normal cell-cycle period over 2 days.


Subject(s)
Dimethylpolysiloxanes/chemistry , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Cell Cycle , HeLa Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...