Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Jpn J Radiol ; 42(6): 555-580, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38453814

ABSTRACT

Coronary artery disease (CAD) is a common condition caused by the accumulation of atherosclerotic plaques. It can be classified into stable CAD or acute coronary syndrome. Coronary computed tomography angiography (CCTA) has a high negative predictive value and is used as the first examination for diagnosing stable CAD, particularly in patients at intermediate-to-high risk. CCTA is also adopted for diagnosing acute coronary syndrome, particularly in patients at low-to-intermediate risk. Myocardial ischemia does not always co-exist with coronary artery stenosis, and the positive predictive value of CCTA for myocardial ischemia is limited. However, CCTA has overcome this limitation with recent technological advancements such as CT perfusion and CT-fractional flow reserve. In addition, CCTA can be used to assess coronary artery plaques. Thus, the indications for CCTA have expanded, leading to an increased demand for radiologists. The CAD reporting and data system (CAD-RADS) 2.0 was recently proposed for standardizing CCTA reporting. This RADS evaluates and categorizes patients based on coronary artery stenosis and the overall amount of coronary artery plaque and links this to patient management. In this review, we aimed to review the major trials and guidelines for CCTA to understand its clinical role. Furthermore, we aimed to introduce the CAD-RADS 2.0 including the assessment of coronary artery stenosis, plaque, and other key findings, and highlight the steps for CCTA reporting. Finally, we aimed to present recent research trends including the perivascular fat attenuation index, artificial intelligence, and the advancements in CT technology.


Subject(s)
Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease , Humans , Computed Tomography Angiography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Angiography/methods , Coronary Vessels/diagnostic imaging
2.
Jpn J Radiol ; 41(8): 843-853, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36811719

ABSTRACT

PURPOSE: To evaluate left atrial (LA) function in patients with hypertrophic cardiomyopathy (HCM) by LA strain assessment using cardiac computed tomography (CT-derived LA strain). MATERIALS AND METHODS: This was a retrospective study of 34 patients with HCM and 31 non-HCM patients who underwent cardiac computed tomography (CT) using retrospective electrocardiogram-gated mode. CT images were reconstructed every 5% (0-95%) of the RR intervals. CT-derived LA strain (reservoir [LASr], conduit [LASc], and booster pump strain [LASp]) were semi-automatically analyzed using a dedicated workstation. We also measured the left atrial volume index (LAVI) and left ventricular longitudinal strain (LVLS) for the left atrial and ventricular functional parameters to assess the relationship with CT-derived LA strain. RESULTS: CT-derived LA strain significantly correlated with LAVI: r = - 0.69, p < 0.001 for LASr; r = - 0.70, p < 0.001 for LASp; and r = - 0.35, p = 0.004 for LASc. CT-derived LA strain also significantly correlated with LVLS: r = - 0.62, p < 0.001 for LASr; r = - 0.67, p < 0.001 for LASc; and r = - 0.42, p = 0.013 for LASp. CT-derived LA strain in patients with HCM was significantly lower than that in non-HCM patients: LASr (20.8 ± 7.6 vs. 31.7 ± 6.1%, p < 0.001); LASc (7.9 ± 3.4 vs. 14.2 ± 5.3%, p < 0.001); and LASp (12.8 ± 5.7 vs. 17.6 ± 4.3%, p < 0.001). Additionally, CT-derived LA strain showed high reproducibility; inter-observer correlation coefficients were 0.94, 0.90, and 0.89 for LASr, LASc, and LASp, respectively. CONCLUSION: CT-derived LA strain is feasible for quantitative assessment of left atrial function in patients with HCM.


Subject(s)
Atrial Fibrillation , Cardiomyopathy, Hypertrophic , Humans , Retrospective Studies , Reproducibility of Results , Heart Atria/diagnostic imaging , Cardiomyopathy, Hypertrophic/diagnostic imaging , Tomography
3.
J Comput Assist Tomogr ; 43(5): 811-816, 2019.
Article in English | MEDLINE | ID: mdl-31453979

ABSTRACT

OBJECTIVE: Knowledge-based iterative model reconstruction (IMR) yields diagnostically acceptable image quality in low-dose static computed tomography (CT). We aimed to evaluate the feasibility of IMR in dynamic myocardial computed tomography perfusion (CTP). METHODS: We enrolled 24 patients who underwent stress dynamic CTP using a 256-slice CT. Images were reconstructed using filtered back projection (FBP), hybrid IR, and IMR. Image quality and hemodynamic parameters were compared among three algorithms. RESULTS: Qualitative image quality and contrast-to-noise ratio were significantly higher by IMR than by FBP or hybrid IR (visual score: 4.1 vs. 3.0 and 3.5; contrast-to-noise ratio: 12.4 vs. 6.6 and 8.4; P < 0.05). No significant difference was observed among algorithms in CTP-derived myocardial blood flow (1.68 vs. 1.73 and 1.70 mL/g/min). CONCLUSIONS: The use of knowledge-based iterative model reconstruction improves image quality without altering hemodynamic parameters in low-dose dynamic CTP, compared with FBP or hybrid IR.


Subject(s)
Computed Tomography Angiography/methods , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/physiopathology , Hemodynamics/physiology , Knowledge Bases , Multidetector Computed Tomography/methods , Aged , Algorithms , Cardiac-Gated Imaging Techniques , Contrast Media , Exercise Test , Feasibility Studies , Female , Humans , Iopamidol , Male , Middle Aged , Radiographic Image Interpretation, Computer-Assisted/methods , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...