Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(20): 26743-26756, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38733403

ABSTRACT

In this work, we explore the use of ring-opening metathesis polymerization (ROMP) facilitated by a second-generation Grubbs catalyst (G2) for the development of advanced polymer membranes aimed at CO2 separation. By employing a novel copolymer blend incorporating 4,4'-oxidianiline (ODA), 1,6-hexanediamine (HDA), 1-adamantylamine (AA), and 3,6,9-trioxaundecylamine (TA), along with a CO2-selective poly(ethylene glycol)/poly(propylene glycol) copolymer (Jeffamine2003) and polydimethylsiloxane (PDMS) units, we have synthesized membranes under ambient conditions with exceptional CO2 separation capabilities. The strategic inclusion of PDMS, up to a 20% composition within the PEG/PPG matrix, has resulted in copolymer membranes that not only surpass the 2008 upper limit for CO2/N2 separation but also meet the commercial targets for CO2/H2 separation. Comprehensive analysis reveals that these membranes adhere to the mixing rule and exhibit percolation behavior across the entire range of compositions (0-100%), maintaining robust antiplasticization performance even under pressures up to 20 atm. Our findings underscore the potential of ROMP in creating precisely engineered membranes for efficient CO2 separation, paving the way for their application in large-scale environmental and industrial processes.

2.
Polymers (Basel) ; 15(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38006167

ABSTRACT

The use of mixed matrix membranes (MMMs) comprising metal-organic frameworks (MOFs) for the separation of CO2 from flue gas has gained recognition as an effective strategy for enhancing gas separation efficiency. When incorporating porous materials like MOFs into a polymeric matrix to create MMMs, the combined characteristics of each constituent typically manifest. Nevertheless, the inadequate dispersion of an inorganic MOF filler within an organic polymer matrix can compromise the compatibility between the filler and matrix. In this context, the aspiration is to develop an MMM that not only exhibits optimal interfacial compatibility between the polymer and filler but also delivers superior gas separation performance, specifically in the efficient extraction of CO2 from flue gas. In this study, we introduce a modification technique involving the grafting of poly(ethylene glycol) diglycidyl ether (PEGDE) onto a UiO-66-NH2 MOF filler (referred to as PEG-MOF), aimed at enhancing its compatibility with the 6FDA-durene matrix. Moreover, the inherent CO2-philic nature of PEGDE is anticipated to enhance the selectivity of CO2 over N2 and CH4. The resultant MMM, incorporating 10 wt% of PEG-MOF loading, exhibits a CO2 permeability of 1671.00 Barrer and a CO2/CH4 selectivity of 22.40. Notably, these values surpass the upper bound reported by Robeson in 2008.

3.
Polymers (Basel) ; 14(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35215567

ABSTRACT

Mixed matrix membranes (MMMs) have attracted significant attention for overcoming the limitations of traditional polymeric membranes for gas separation through the improvement of both permeability and selectivity. However, the development of defect-free MMMs remains challenging due to the poor compatibility of the metal-organic framework (MOF) with the polymer matrix. Thus, we report a surface-modification strategy for a MOF through grafting of a polymer with intrinsic microporosity onto the surface of UiO-66-NH2. This method allows us to engineer the MOF-polymer interface in the MMMs using Pebax as a support. The insertion of a PIM structure onto the surface of UiO-66-NH2 provides additional molecular transport channels and enhances the CO2 transport by increasing the compatibility between the polymer and fillers for efficient gas separation. As a result, MMM with 1 wt% loading of PIM-grafted-MOF (PIM-g-MOF) exhibited very promising separation performance, with CO2 permeability of 247 Barrer and CO2/N2 selectivity of 56.1, which lies on the 2008 Robeson upper bound. Moreover, this MMM has excellent anti-aging properties for up to 240 days and improved mechanical properties (yield stress of 16.08 MPa, Young's modulus of 1.61 GPa, and 596.5% elongation at break).

4.
ACS Appl Mater Interfaces ; 13(42): 49890-49906, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34643079

ABSTRACT

Polymer membranes with excellent thermomechanical properties and good gas separation performance are desirable for efficient CO2 separation. A series of copolyimide membranes are prepared for the first time using PIM-PI-1, a hard segment with high CO2 permeability, and poly(ethylene glycol)/poly(propylene glycol) (PEG/PPG), a soft segment with high CO2 selectivity. Two different unit polymers are combined to compensate the limitations of each polymer (e.g., the fast aging and moderate selectivity of PIM-PI-1 and the poor mechanical properties and lower permeability of PEG/PPG). The corresponding PIM-(durene-PEG/PPG) membranes exhibit an excellent combination of mechanical properties and gas separation performance compared to the typical PI-PEG-based copolymer membrane. The improved mechanical property is attributed to the unique chain threading and the reinforcement between the spiro unit of PIM and the flexible PEG/PPG at the molecular level, which has not previously been exploited for membranes. The PIM-(durene-PEG/PPG) membranes show a high CO2 permeability of 350-669 Barrer and a high CO2/N2 selectivity of 33.5-40.3. The experimental results are further evaluated with theoretical results obtained from molecular simulation studies, and a very good agreement between the experimental results and simulation results is found. Moreover, the PIM-(durene-PEG/PPG) copolymer membranes display excellent anti-aging performance for up to 1 year.

5.
Membranes (Basel) ; 11(9)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34564467

ABSTRACT

Thin-film composite mixed matrix membranes (CMMMs) were fabricated using interfacial polymerization to achieve high permeance and selectivity for CO2 separation. This study revealed the role of substrate properties on performance, which are not typically considered important. In order to enhance the affinity between the substrate and the coating solution during interfacial polymerization and increase the selectivity of CO2, a mixture of polyethylene glycol (PEG) and dopamine (DOPA) was subjected to a spinning process. Then, the surface of the substrate was subjected to interfacial polymerization using polyethyleneimine (PEI), trimesoyl chloride (TMC), and sodium dodecyl sulfate (SDS). The effect of adding SDS as a surfactant on the structure and gas permeation properties of the fabricated membranes was examined. Thin-film composite hollow fiber membranes containing modified graphene oxide (mGO) were fabricated, and their characteristics were analyzed. The membranes exhibited very promising separation performance, with CO2 permeance of 73 GPU and CO2/N2 selectivity of 60. From the design of a membrane substrate for separating CO2, the CMMMs hollow fiber membrane was optimized using the active layer and mGO nanoparticles through interfacial polymerization.

6.
Polymers (Basel) ; 13(12)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200603

ABSTRACT

A series of CO2-selective polyimides (CE-PDMS-PI-x) was synthesized by copolymerizing crown ether diamine (trans-diamino-DB18C6) and PDMS-diamine with 4,4'-(hexafluoroisopropylidene) di-phthalic anhydride (6FDA) through the polycondensation reaction. The structural characteristics of the copolymers and corresponding membranes were characterized by nuclear magnetic resonance (NMR), infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and gel permeation chromatography (GPC). The effect of PDMS loading on the CE-PDMS-PI-x copolymers was further analyzed and a very good structure-property relationship was found. A well-distributed soft PDMS unit played a key role in the membrane's morphology, in which improved CO2-separation performance was observed at a low PDMS content (5 wt %). In contrast, the fine-grained phase separation adversely affected the separation behavior at a certain level of PDMS loading, and the PDMS was found to provide a flexible gas-diffusion path, affecting only the permeability without changing the selective gas-separation performance for the copolymers with a PDMS content of 20% or above.

7.
ACS Appl Mater Interfaces ; 12(52): 57916-57931, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33337874

ABSTRACT

Mixed-matrix membranes (MMMs) with an ideal polymer-filler interface and high gas separation performance are very challenging to fabricate because of incompatibility between the fillers and the polymer matrix. This work provides a simple technique to prepare a series of cross-linked MMMs (xMMM@n) by covalently attaching UiO-66-NB metal-organic frameworks (MOFs) within the PEG/PPG-PDMS copolymer matrix via ring-opening metathesis polymerization and in situ membrane casting. The norbornene-modified MOF (UiO-66-NB) is successfully copolymerized and dispersed homogeneously into a PEG/PPG-PDMS matrix because of very fast polymer formation and strong covalent interaction between MOFs and the rubbery polymer. A significant improvement in gas permeability is achieved in membranes up to a 5 wt % MOF loading compared to the pristine polymer membrane without affecting selectivity. The CO2/N2 separation performance of xMMM@1, xMMM@3, and xMMM@5 with 1, 3, and 5 wt % MOF loading, respectively, surpassed Robeson's 2008 upper bound. In addition, the best performing membrane, xMMM@3 (PCO2 = 585 Barrer and CO2/N2 ∼53), approaches the 2019 upper bound, indicating that the cross-linked MMMs (xMMM@n) are very promising for CO2 separation from flue gas. The experimental results of our study were evaluated and are supported by theoretical data obtained using the Maxwell model for MMMs. Moreover, the developed MMMs, xMMM@ns, displayed outstanding antiplasticization performance at pressures of up to 25 atm and very stable antiaging performance for up to 11 months with good temperature switching behaviors.

8.
Polymers (Basel) ; 12(8)2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32727152

ABSTRACT

In this study, precursor molecules based on PEG/PPG and polydimethylsiloxane (PDMS), both widely used rubbery polymers, were copolymerized with bulky adamantane into copolymer membranes. Ring-opening metathesis polymerization (ROMP) was employed during the polymerization process to create a structure with both ends crosslinked. The precursor molecules and corresponding polymer membranes were characterized using various analytical methods. The polymer membranes were fabricated using different compositions of PDMS and adamantane, to determine how the network structure affected their gas separation performance. PEG/PPG, in which CO2 is highly soluble, was copolymerized with PDMS, which has high permeability, and adamantane, which controlled the crosslinking density with a rigid and bulky structure. It was confirmed that the resulting crosslinked polymer membranes exhibited high solubility and diffusivity for CO2. Further, their crosslinked structure using ROMP technique made it possible to form good films. The membranes fabricated in the present study exhibited excellent performance, i.e., CO2 permeability of up to 514.5 Barrer and CO2/N2 selectivity of 50.9.

9.
ACS Appl Mater Interfaces ; 12(24): 27286-27299, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32453943

ABSTRACT

Rubbery polymer membranes prepared from CO2-philic PEO and/or highly permeable PDMS are desired for efficient CO2 separation from light gases (CH4 and N2). Poor mechanical properties and size-sieving ability, however, limit their application in gas separation applications. Cross-linked rubbery polymer-based gas separation membranes with a low Tg based on both PEG/PPG and PDMS units with various compositions between these two units are prepared for the first time in this work by ring-opening metathesis polymerization type cross-linking and in situ membrane casting. The developed membranes display excellent CO2 separation performance with CO2 permeability ranging from 301 to 561 Barrer with excellent CO2/N2 selectivity ranging from 50 to 59, overcoming the Robeson upper bound (2008). The key finding underlying the excellent performance of the newly developed cross-linked x(PEG/PPG:PDMS) membranes is the formation of a well-connected interlocked network structure, which endows the rubbery materials with the properties of rigid polymers, e.g., size-sieving ability and high thermomechanical stability. Moreover, the membrane shows long-term antiaging performance of up to eight months and antiplasticization behavior up to 25 atm pressure.

10.
Membranes (Basel) ; 9(9)2019 Aug 31.
Article in English | MEDLINE | ID: mdl-31480478

ABSTRACT

Random copolymers made of both (PIM-polyimide) and (6FDA-durene-PI) were prepared for the first time by a facile one-step polycondensation reaction. By combining the highly porous and contorted structure of PIM (polymers with intrinsic microporosity) and high thermomechanical properties of PI (polyimide), the membranes obtained from these random copolymers [(PIM-PI)-(6FDA-durene-PI)] showed high CO2 permeability (>1047 Barrer) with moderate CO2/N2 (> 16.5) and CO2/CH4 (> 18) selectivity, together with excellent thermal and mechanical properties. The membranes prepared from three different compositions of two comonomers (1:4, 1:6 and 1:10 of x:y), all showed similar morphological and physical properties, and gas separating performance, indicating ease of synthesis and practicability for production in large scale. The gas separation performance of these membranes at various pressure ranges (100-1500 torr) was also investigated.

11.
RSC Adv ; 8(3): 1328-1336, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-35540897

ABSTRACT

We synthesized copolymers consisting mostly of physically stable rigid polyimide (PI) and a low content of highly permeable rubbery polydimethylsiloxane (PDMS), that were crosslinked by CO2-philic ionic piperazinium groups attached to the side chains of the copolymers. These crosslinked copolymers (xPI-PDMSs) were fashioned into membranes that showed very high levels of thermochemical stability and excellent CO2 separation performance (P CO2 of 799 Barrer and CO2/N2 permselectivity of 15.7). The inclusion of the piperazinium groups not only endowed these xPI-PDMS membranes with increased selectivity for CO2, but also good resistance to CO2 plasticization. The effect of PDMS content on morphology and CO2 separation properties of xPI-PDMS was also investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...