Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Biopharm ; 101: 137-44, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26883854

ABSTRACT

In this work, we propose pharmaceutical textiles imprinted with lipid microparticles of Econazole nitrate (ECN) as a mean to improve patient compliance while maintaining drug activity. Lipid microparticles were prepared and characterized by laser diffraction (3.5±0.1 µm). Using an optimized screen-printing method, microparticles were deposited on textiles, as observed by scanning electron microscopy. The drug content of textiles (97±3 µg/cm(2)) was reproducible and stable up to 4 months storage at 25 °C/65% Relative Humidity. Imprinted textiles exhibited a thermosensitive behavior, as witnessed by a fusion temperature of 34.8 °C, which enabled a larger drug release at 32 °C (temperature of the skin) than at room temperature. In vitro antifungal activity of ECN textiles was compared to commercial 1% (wt/wt) ECN cream Pevaryl®. ECN textiles maintained their antifungal activity against a broad range of Candida species as well as major dermatophyte species. In vivo, ECN textiles also preserved the antifungal efficacy of ECN on cutaneous candidiasis infection in mice. Ex vivo percutaneous absorption studies demonstrated that ECN released from pharmaceutical textiles concentrated more in the upper skin layers, where the fungal infections develop, as compared to dermal absorption of Pevaryl®. Overall, these results showed that this technology is promising to develop pharmaceutical garments textiles for the treatment of superficial fungal infections.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Econazole/pharmacology , Administration, Cutaneous , Animals , Antifungal Agents/chemistry , Candidiasis/drug therapy , Drug Carriers/chemistry , Econazole/chemistry , Female , Lipids/chemistry , Mice , Molecular Imprinting/methods , Skin/metabolism , Skin Absorption , Swine , Temperature , Textiles
2.
Am J Health Syst Pharm ; 71(8): 669-73, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24688042

ABSTRACT

PURPOSE: The stability of penicillin G sodium solutions stored in polyvinyl chloride (PVC) bags or elastomeric pump containers was studied. METHODS: Test samples were prepared by diluting powdered penicillin G sodium (10 million units/10-mL vial) to solutions of 2,500 or 50,000 units/mL with 0.9% sodium chloride injection or 5% dextrose injection. The preparations were transferred to 250-mL PVC bags and elastomeric pump containers. All samples were prepared in triplicate and stored at 5°C. Chemical stability was measured by a stability-indicating high-performance liquid chromatographic (HPLC) assay and by pH evaluation. Particulate matter was evaluated according to compendial standards using a light-obscuration particle count test. Preparations were visually examined throughout the study. RESULTS: After 21 days of storage, all test samples remained chemically stable, with an HPLC assay recovery value of more than 90% of the initial value. After 28 days, all samples prepared with either diluent and stored in PVC bags, as well as the samples diluted to 2,500 units/mL with sodium chloride injection and stored in elastomeric pump containers, did not meet the recovery acceptance limit. For all test samples, the mean pH consistently decreased during storage, from about 6.4 to about 5.5. Particle counts remained acceptable throughout the study, and no change in appearance was observed. CONCLUSION: Penicillin G for injection (2,500 and 50,000 units/mL) diluted in 0.9% sodium chloride injection or 5% dextrose injection and stored at 5°C in PVC containers or elastomeric pump containers was physically and chemically stable for a period of at least 21 days.


Subject(s)
Anti-Bacterial Agents/chemistry , Penicillin G/chemistry , Polyvinyl Chloride/chemistry , Sodium Chloride/chemistry , Anti-Bacterial Agents/administration & dosage , Chromatography, High Pressure Liquid , Drug Packaging , Drug Stability , Drug Storage , Elastomers/chemistry , Glucose/chemistry , Hydrogen-Ion Concentration , Injections , Penicillin G/administration & dosage , Time Factors
3.
ISRN Pharm ; 2013: 458625, 2013.
Article in English | MEDLINE | ID: mdl-23862077

ABSTRACT

Betaine is used to treat homocystinuria and is not available in Canada as a formulated drug. In order to facilitate the administration of this compound to patients, a capsule formulation and an evaluation of its stability were required. Capsule formulations of betaine were developed (160 mg and 625 mg of betaine per capsule). As betaine has no chromophore, an HPLC-ELSD analytical method was also developed. The critical quality attributes of these formulations were evaluated (content assay, content uniformity, and dissolution) as well as their stability. Capsules with acceptable quality attributes were produced. These capsules remained stable for 1 year when stored in airtight containers at controlled room temperature. However, shelf life decreased dramatically in nonairtight containers at 30°C (3 months for the lactose-containing capsules of 160 mg and 6 months for the capsules of 625 mg).

SELECTION OF CITATIONS
SEARCH DETAIL
...