Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 13648, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37607994

ABSTRACT

Cancer treatment resistance is a caused by presence of various types of cells and heterogeneity within the tumor. Tumor cell-cell and cell-microenvironment interactions play a significant role in the tumor progression and invasion, which have important implications for diagnosis, and resistance to chemotherapy. In this study, we develop 3D bioprinted in vitro models of the breast cancer tumor microenvironment made of co-cultured cells distributed in a hydrogel matrix with controlled architecture to model tumor heterogeneity. We hypothesize that the tumor could be represented by a cancer cell-laden co-culture hydrogel construct, whereas its microenvironment can be modeled in a microfluidic chip capable of producing a chemical gradient. Breast cancer cells (MCF7 and MDA-MB-231) and non-tumorigenic mammary epithelial cells (MCF10A) were embedded in the alginate-gelatine hydrogels and printed using a multi-cartridge extrusion bioprinter. Our approach allows for precise control over position and arrangements of cells in a co-culture system, enabling the design of various tumor architectures. We created samples with two different types of cells at specific initial locations, where the density of each cell type was carefully controlled. The cells were either randomly mixed or positioned in sequential layers to create cellular heterogeneity. To study cell migration toward chemoattractant, we developed a chemical microenvironment in a chamber with a gradual chemical gradient. As a proof of concept, we studied different migration patterns of MDA-MB-231 cells toward the epithelial growth factor gradient in presence of MCF10A cells in different ratios using this device. Our approach involves the integration of 3D bioprinting and microfluidic devices to create diverse tumor architectures that are representative of those found in various patients. This provides an excellent tool for studying the behavior of cancer cells with high spatial and temporal resolution.


Subject(s)
Breast Neoplasms , Humans , Female , Coculture Techniques , Cell Movement , Epithelial Cells , Hydrogels , Tumor Microenvironment
2.
Food Sci Nutr ; 10(11): 3585-3597, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36348777

ABSTRACT

Since the urease enzyme creates gastric cancer, peptic ulcer, hepatic coma, and urinary stones in millions of people worldwide, it is essential to find strong inhibitors to help patients. Natural products are well known for their beneficial effects on health and efforts are being made to isolate the ingredients, the so-called flavonoids. Flavonoids are now considered as an indispensable component in a variety of nutraceutical, pharmaceutical, and cosmetic applications. Kaempferol (KPF) is an antioxidant found in many fruits and vegetables. Many reports have explained the significant effects of dietary KPF in reducing the risk of chronic diseases such as cancer, ischemia, stroke, and Parkinson's. The current study aimed at investigating the inhibitory impact of KPF on Jack bean urease (JBU) using molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations to confirm the results obtained from isothermal titration calorimetry (ITC), extended solvation model, and docking software. In addition, UV-VIS spectrophotometry was used to study the kinetics of urease inhibition. Calorimetric and spectrophotometric determinations of the kinetic parameters of this inhibition indicate the occurrence of a reversible and noncompetitive mode. Also, the docking and MD results indicated that the urease had well adapted to the kaempferol in the binding pocket, thereby forming a stable complex. Kaempferol displayed low binding energy during MMPBSA calculations. The inhibitory potential of kaempferol was confirmed by experimental and simulation data, but in vivo investigations are also recommended to validate our results.

3.
Cancers (Basel) ; 14(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35053452

ABSTRACT

During cancer progression, tumors shed different biomarkers into the bloodstream, including circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating cell-free DNA (cfDNA), and circulating tumor DNA (ctDNA). The analysis of these biomarkers in the blood, known as 'liquid biopsy' (LB), is a promising approach for early cancer detection and treatment monitoring, and more recently, as a means for cancer therapy. Previous reviews have discussed the role of CTCs and ctDNA in cancer progression; however, ctDNA and EVs are rapidly evolving with technological advancements and computational analysis and are the subject of enormous recent studies in cancer biomarkers. In this review, first, we introduce these cell-released cancer biomarkers and briefly discuss their clinical significance in cancer diagnosis and treatment monitoring. Second, we present conventional and novel approaches for the isolation, profiling, and characterization of these markers. We then investigate the mathematical and in silico models that are developed to investigate the function of ctDNA and EVs in cancer progression. We convey our views on what is needed to pave the way to translate the emerging technologies and models into the clinic and make the case that optimized next-generation techniques and models are needed to precisely evaluate the clinical relevance of these LB markers.

4.
Anal Chem ; 94(4): 2087-2098, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35029971

ABSTRACT

In immunobead-based assays, micro/nanobeads are functionalized with antibodies to capture the target analytes, which can significantly improve the assay's performance. The immunobead-based assays have been recently combined with microfluidic mixing devices and customized for a variety of applications. However, device design and process optimization to achieve the best performance remain a substantial technological challenge. Here, we introduce a computational model that enables the rational design and optimization of the immunobead-based assay in a microfluidic mixing channel. We use numerical methods to examine the effect of the flow rates, channel geometry, bead's trajectory, and the analyte and reagent characteristics on the efficiency of analyte capture on the surface of microbeads. This model accounts for different bead movements inside the microchannel, with the goal of simulating an actual active binding environment. The model is further validated experimentally where different microfluidic channels are tested to capture the target analytes. Our experimental results are shown to meet theoretical predictions. While the model is demonstrated here for the analysis of IgG capture in simple and herringbone-structured microchannels, it can be readily adapted to a broad range of target molecules and different device designs.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Lab-On-A-Chip Devices , Microfluidics/methods , Microspheres , Models, Theoretical
5.
Biomed Microdevices ; 23(3): 41, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34379212

ABSTRACT

Despite great developments in inertial microfluidics, there is still a lack of knowledge to precisely define the particles' behavior in the microchannels. In the present study, as a prerequisite to experimental studies, numerical simulations have been used to study the capture efficiency of target particles in the contraction-expansion microchannel, aiming to provide an estimation of the conditions at which the channel performs best. Fluid analysis based on Navier-Stokes equations is conducted using the finite element method to determine the streamlines and vortices. The highest capture efficiency for 10, 15, and 19-micron particles occurs when the center of the vortex is approximately in the middle of the wide section (at the flow rate of 0.35 ml/min). In addition to investigating the effect of particle diameter and input flow rate, the effect of channel geometry parameters (channel height and initial length of the channel) on particle trapping has also been studied. Also, to consider great interest in separating different-sized bioparticles from a sample, a three-stage platform has been designed to separate four types of bone marrow cells and evaluate the possibility of using contraction-expansion channels in this application.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Bone Marrow Cells , Feasibility Studies , Particle Size
6.
J Pharm Biomed Anal ; 134: 36-42, 2017 Feb 05.
Article in English | MEDLINE | ID: mdl-27871055

ABSTRACT

This paper introduces an integrated microfluidic chip as a promising tool to measure the concentration of bladder cancer cells (BCC) in urine samples. Silicon microchannels were used as trapping gates for both floated BCC and leukocytes which are found in the urine of patients. By the assistance of the gold electrodes patterned at the bottom of the micro gates, the capacitance of captured cancerous and blood cells were measured. Different membrane capacitance between BCC and leukocyte was the indicative signal for diagnosing the nature of captured cells in a urine like solution. The concentration range of the target that could be detected was about 10 BCCs per one chip. Such response has been achieved without applying any biochemical or florescent markers. Thus, it could be a simple and cheap approach to support cytological and immune-fluorescent assays. The limit of detection was approximately 1 cancerous cell/11 leukocytes in 1ml of the urine like solution. The entire measurement time was less than an hour. Consequently, this electrical microfluidic device promises significant potential in urinalysis.


Subject(s)
Leukocytes/chemistry , Leukocytes/metabolism , Microfluidic Analytical Techniques/methods , Silicon/chemistry , Urinary Bladder Neoplasms/blood , Urinary Bladder Neoplasms/urine , Blood Cells/chemistry , Blood Cells/metabolism , Humans , Lab-On-A-Chip Devices , Urinalysis/methods , Urinary Bladder Neoplasms/diagnosis
7.
Small ; 12(7): 883-91, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26727927

ABSTRACT

An integrated nano-electromechanical chip (NELMEC) has been developed for the label-free distinguishing of both epithelial and mesenchymal circulating tumor cells (ECTCs and MCTCs, respectively) from white blood cells (WBCs). This nanoelectronic microfluidic chip fabricated by silicon micromachining can trap large single cells (>12 µm) at the opening of the analysis microchannel arrays. The nature of the captured cells is detected using silicon nanograss (SiNG) electrodes patterned at the entrance of the channels. There is an observable difference between the membrane capacitance of the ECTCs and MCTCs and that of WBCs (measured using SiNG electrodes), which is the key indication for our diagnosis. The NELMEC chip not only solves the problem of the size overlap between CTCs and WBCs but also detects MCTCs without the need for any markers or tagging processes, which has been an important problem in previously reported CTC detection systems. The great conductivity of the gold-coated SiNG nanocontacts as well as their safe penetration into the membrane of captured cells, facilitate a precise and direct signal extraction to distinguish the type of captured cell. The results achieved from epithelial (MCF-7) and mesenchymal (MDA-MB231) breast cancer cells circulated in unprocessed blood suggest the significant applications for these diagnostic abilities of NELMEC.


Subject(s)
Cell Separation/methods , Electronics/methods , Epithelial Cells/pathology , Leukocytes/pathology , Mesoderm/pathology , Microfluidic Analytical Techniques/methods , Nanotechnology/methods , Neoplastic Cells, Circulating/pathology , Cell Line, Tumor , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...