Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
medRxiv ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39108502

ABSTRACT

Background: Asthma, a complex respiratory disease, presents with inflammatory symptoms in the lungs, blood, and other tissues. We investigated the relationship between DNA methylation and 35 clinical markers of asthma. The Illumina Infinium EPIC v1 methylation array was used to evaluate 742,442 CpGs in whole blood samples from 319 participants. They were part of the Netherlands Twin Register from families with at least one member suffering from severe asthma. Repeat blood samples were taken after 10 years from 182 of these individuals. Principal component analysis (PCA) on the clinical markers yielded ten principal components (PCs) that explained 92.8% of the total variance. We performed epigenome-wide association studies (EWAS) for each of the ten PCs correcting for familial structure and other covariates. Results: 221 unique CpGs reached genome-wide significance at timepoint 1 (T1) after Bonferroni correction. PC7 accounted for the majority of associations (204), which correlated with loadings of eosinophil counts and immunoglobulin levels. Enrichment analysis via the EWAS Atlas identified 190 of these CpGs to be previously identified in EWASs of asthma and asthma-related traits. Proximity assessment to previously identified SNPs associated with asthma identified 17 unique SNPs within 1 MB of two of the 221 CpGs. EWAS in 182 individuals with epigenetic data at a second timepoint (T2) identified 49 significant CpGs. EWAS Atlas enrichment analysis indicated that 4 of the 49 were previously associated with asthma or asthma-related traits. Comparing the estimates of all the significant associations identified across the two time points (271 in total) yielded a correlation of 0.81. Conclusion: We identified 270 unique CpGs that were associated with PC scores generated from 35 clinical markers of asthma, either cross-sectionally or 10 years later. A strong correlation was present between effect sizes at the 2 timepoints. Most associations were identified for PC7, which captured blood eosinophil counts and immunoglobulin levels and many of these CpGs have previous associations in earlier studies of asthma and asthma-related traits. The results point to using this robust DNA methylation profile as a new, stable biomarker for asthma.

2.
medRxiv ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38946972

ABSTRACT

Epigenome-wide association studies (EWAS) aim to identify differentially methylated loci associated with complex traits and disorders. EWAS of cigarette smoking shows some of the most widespread DNA methylation (DNAm) associations in blood. However, traditional EWAS cannot differentiate between causation and confounding, leading to ambiguity in etiological interpretations. Here, we apply an integrated approach combining Mendelian Randomization and twin-based Direction-of-Causation analyses (MR-DoC) to examine causality underlying smoking-associated blood DNAm changes in the Netherlands Twin Register (N=2577). Evidence across models suggests that current smoking's causal effects on DNAm likely drive many of the previous EWAS findings, implicating functional pathways relevant to several adverse health outcomes of smoking, including hemopoiesis, cell- and neuro-development, and immune regulation. Additionally, we find evidence of potential reverse causal influences at some DNAm sites, with 17 of these sites enriched for gene regulatory functional elements in the brain. The top three sites with evidence of DNAm's effects on smoking annotate to genes involved in G protein-coupled receptor signaling (GNG7, RGS3) and innate immune response (SLC15A4), elucidating potential biological risk factors for smoking. This study highlights the utility of integrating genotypic and DNAm measures in twin cohorts to clarify the causal relationships between health behaviors and blood DNAm.

4.
Res Sq ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38746362

ABSTRACT

Individual sensitivity to environmental exposures may be genetically influenced. This genotype-by-environment interplay implies differences in phenotypic variance across genotypes. However, environmental sensitivity genetic variants have proven challenging to detect. GWAS of monozygotic twin differences is a family-based variance analysis method, which is more robust to systemic biases that impact population-based methods. We combined data from up to 21,792 monozygotic twins (10,896 pairs) from 11 studies to conduct the largest GWAS meta-analysis of monozygotic phenotypic differences in children and adolescents/adults for seven psychiatric and neurodevelopmental phenotypes: attention deficit hyperactivity disorder (ADHD) symptoms, autistic traits, anxiety and depression symptoms, psychotic-like experiences, neuroticism, and wellbeing. The SNP-heritability of variance in these phenotypes were estimated (h2: 0% to 18%), but were imprecise. We identified a total of 13 genome-wide significant associations (SNP, gene, and gene-set), including genes related to stress-reactivity for depression, growth factor-related genes for autistic traits and catecholamine uptake-related genes for psychotic-like experiences. Monozygotic twins are an important new source of evidence about the genetics of environmental sensitivity.

5.
Cancers (Basel) ; 16(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38672660

ABSTRACT

Breast cancer (BC) is a complex disease affecting one in eight women in the USA. Advances in population genomics have led to the development of polygenic risk scores (PRSs) with the potential to augment current risk models, but replication is often limited. We evaluated 2 robust PRSs with 313 and 3820 SNPs and the effects of multiple genotype imputation replications in BC cases and control populations. Biological samples from BC cases and cancer-free controls were drawn from three European ancestry cohorts. Genotyping on the Illumina Global Screening Array was followed by stringent quality control measures and 20 genotype imputation replications. A total of 468 unrelated cases and 4337 controls were scored, revealing significant differences in mean PRS percentiles between cases and controls (p < 0.001) for both SNP sets (313-SNP PRS: 52.81 and 48.07; 3820-SNP PRS: 55.45 and 49.81), with receiver operating characteristic curve analysis showing area under the curve values of 0.596 and 0.603 for the 313-SNP and 3820-SNP PRS, respectively. PRS fluctuations (from ~2-3% up to 9%) emerged across imputation iterations. Our study robustly reaffirms the predictive capacity of PRSs for BC by replicating their performance in an independent BC population and showcases the need to average imputed scores for reliable outcomes.

6.
Twin Res Hum Genet ; 27(1): 1-11, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38497097

ABSTRACT

In this cohort profile article we describe the lifetime major depressive disorder (MDD) database that has been established as part of the BIObanks Netherlands Internet Collaboration (BIONIC). Across the Netherlands we collected data on Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) lifetime MDD diagnosis in 132,850 Dutch individuals. Currently, N = 66,684 of these also have genomewide single nucleotide polymorphism (SNP) data. We initiated this project because the complex genetic basis of MDD requires large population-wide studies with uniform in-depth phenotyping. For standardized phenotyping we developed the LIDAS (LIfetime Depression Assessment Survey), which then was used to measure MDD in 11 Dutch cohorts. Data from these cohorts were combined with diagnostic interview depression data from 5 clinical cohorts to create a dataset of N = 29,650 lifetime MDD cases (22%) meeting DSM-5 criteria and 94,300 screened controls. In addition, genomewide genotype data from the cohorts were assembled into a genomewide association study (GWAS) dataset of N = 66,684 Dutch individuals (25.3% cases). Phenotype data include DSM-5-based MDD diagnoses, sociodemographic variables, information on lifestyle and BMI, characteristics of depressive symptoms and episodes, and psychiatric diagnosis and treatment history. We describe the establishment and harmonization of the BIONIC phenotype and GWAS datasets and provide an overview of the available information and sample characteristics. Our next step is the GWAS of lifetime MDD in the Netherlands, with future plans including fine-grained genetic analyses of depression characteristics, international collaborations and multi-omics studies.


Subject(s)
Biological Specimen Banks , Depressive Disorder, Major , Genome-Wide Association Study , Humans , Netherlands/epidemiology , Female , Male , Depressive Disorder, Major/genetics , Depressive Disorder, Major/epidemiology , Middle Aged , Adult , Internet , Genomics , Polymorphism, Single Nucleotide , Cohort Studies , Phenotype , Aged
7.
Mol Psychiatry ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548983

ABSTRACT

While 1-2% of individuals meet the criteria for a clinical diagnosis of obsessive-compulsive disorder (OCD), many more (~13-38%) experience subclinical obsessive-compulsive symptoms (OCS) during their life. To characterize the genetic underpinnings of OCS and its genetic relationship to OCD, we conducted the largest genome-wide association study (GWAS) meta-analysis of parent- or self-reported OCS to date (N = 33,943 with complete phenotypic and genome-wide data), combining the results from seven large-scale population-based cohorts from Sweden, the Netherlands, England, and Canada (including six twin cohorts and one cohort of unrelated individuals). We found no genome-wide significant associations at the single-nucleotide polymorphism (SNP) or gene-level, but a polygenic risk score (PRS) based on the OCD GWAS previously published by the Psychiatric Genetics Consortium (PGC-OCD) was significantly associated with OCS (Pfixed = 3.06 × 10-5). Also, one curated gene set (Mootha Gluconeogenesis) reached Bonferroni-corrected significance (Ngenes = 28, Beta = 0.79, SE = 0.16, Pbon = 0.008). Expression of genes in this set is high at sites of insulin mediated glucose disposal. Dysregulated insulin signaling in the etiology of OCS has been suggested by a previous study describing a genetic overlap of OCS with insulin signaling-related traits in children and adolescents. We report a SNP heritability of 4.1% (P = 0.0044) in the meta-analyzed GWAS, and heritability estimates based on the twin cohorts of 33-43%. Genetic correlation analysis showed that OCS were most strongly associated with OCD (rG = 0.72, p = 0.0007) among all tested psychiatric disorders (N = 11). Of all 97 tested phenotypes, 24 showed a significant genetic correlation with OCS, and 66 traits showed concordant directions of effect with OCS and OCD. OCS have a significant polygenic contribution and share genetic risk with diagnosed OCD, supporting the hypothesis that OCD represents the extreme end of widely distributed OCS in the population.

8.
Multivariate Behav Res ; 59(2): 342-370, 2024.
Article in English | MEDLINE | ID: mdl-38358370

ABSTRACT

Cross-lagged panel models (CLPMs) are commonly used to estimate causal influences between two variables with repeated assessments. The lagged effects in a CLPM depend on the time interval between assessments, eventually becoming undetectable at longer intervals. To address this limitation, we incorporate instrumental variables (IVs) into the CLPM with two study waves and two variables. Doing so enables estimation of both the lagged (i.e., "distal") effects and the bidirectional cross-sectional (i.e., "proximal") effects at each wave. The distal effects reflect Granger-causal influences across time, which decay with increasing time intervals. The proximal effects capture causal influences that accrue over time and can help infer causality when the distal effects become undetectable at longer intervals. Significant proximal effects, with a negligible distal effect, would imply that the time interval is too long to estimate a lagged effect at that time interval using the standard CLPM. Through simulations and an empirical application, we demonstrate the impact of time intervals on causal inference in the CLPM and present modeling strategies to detect causal influences regardless of the time interval in a study. Furthermore, to motivate empirical applications of the proposed model, we highlight the utility and limitations of using genetic variables as IVs in large-scale panel studies.


Subject(s)
Models, Statistical , Cross-Sectional Studies , Causality
9.
Genome Biol ; 25(1): 22, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38229171

ABSTRACT

BACKGROUND: Pubertal growth patterns correlate with future health outcomes. However, the genetic mechanisms mediating growth trajectories remain largely unknown. Here, we modeled longitudinal height growth with Super-Imposition by Translation And Rotation (SITAR) growth curve analysis on ~ 56,000 trans-ancestry samples with repeated height measurements from age 5 years to adulthood. We performed genetic analysis on six phenotypes representing the magnitude, timing, and intensity of the pubertal growth spurt. To investigate the lifelong impact of genetic variants associated with pubertal growth trajectories, we performed genetic correlation analyses and phenome-wide association studies in the Penn Medicine BioBank and the UK Biobank. RESULTS: Large-scale growth modeling enables an unprecedented view of adolescent growth across contemporary and 20th-century pediatric cohorts. We identify 26 genome-wide significant loci and leverage trans-ancestry data to perform fine-mapping. Our data reveals genetic relationships between pediatric height growth and health across the life course, with different growth trajectories correlated with different outcomes. For instance, a faster tempo of pubertal growth correlates with higher bone mineral density, HOMA-IR, fasting insulin, type 2 diabetes, and lung cancer, whereas being taller at early puberty, taller across puberty, and having quicker pubertal growth were associated with higher risk for atrial fibrillation. CONCLUSION: We report novel genetic associations with the tempo of pubertal growth and find that genetic determinants of growth are correlated with reproductive, glycemic, respiratory, and cardiac traits in adulthood. These results aid in identifying specific growth trajectories impacting lifelong health and show that there may not be a single "optimal" pubertal growth pattern.


Subject(s)
Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Adult , Adolescent , Humans , Child , Child, Preschool , Puberty/genetics , Phenotype , Body Height/genetics , Outcome Assessment, Health Care , Longitudinal Studies
10.
Hum Reprod ; 39(1): 240-257, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38052102

ABSTRACT

STUDY QUESTION: Which genetic factors regulate female propensity for giving birth to spontaneous dizygotic (DZ) twins? SUMMARY ANSWER: We identified four new loci, GNRH1, FSHR, ZFPM1, and IPO8, in addition to previously identified loci, FSHB and SMAD3. WHAT IS KNOWN ALREADY: The propensity to give birth to DZ twins runs in families. Earlier, we reported that FSHB and SMAD3 as associated with DZ twinning and female fertility measures. STUDY DESIGN, SIZE, DURATION: We conducted a genome-wide association meta-analysis (GWAMA) of mothers of spontaneous dizygotic (DZ) twins (8265 cases, 264 567 controls) and of independent DZ twin offspring (26 252 cases, 417 433 controls). PARTICIPANTS/MATERIALS, SETTING, METHODS: Over 700 000 mothers of DZ twins, twin individuals and singletons from large cohorts in Australia/New Zealand, Europe, and the USA were carefully screened to exclude twins born after use of ARTs. Genetic association analyses by cohort were followed by meta-analysis, phenome wide association studies (PheWAS), in silico and in vivo annotations, and Zebrafish functional validation. MAIN RESULTS AND THE ROLE OF CHANCE: This study enlarges the sample size considerably from previous efforts, finding four genome-wide significant loci, including two novel signals and a further two novel genes that are implicated by gene level enrichment analyses. The novel loci, GNRH1 and FSHR, have well-established roles in female reproduction whereas ZFPM1 and IPO8 have not previously been implicated in female fertility. We found significant genetic correlations with multiple aspects of female reproduction and body size as well as evidence for significant selection against DZ twinning during human evolution. The 26 top single nucleotide polymorphisms (SNPs) from our GWAMA in European-origin participants weakly predicted the crude twinning rates in 47 non-European populations (r = 0.23 between risk score and population prevalence, s.e. 0.11, 1-tail P = 0.058) indicating that genome-wide association studies (GWAS) are needed in African and Asian populations to explore the causes of their respectively high and low DZ twinning rates. In vivo functional tests in zebrafish for IPO8 validated its essential role in female, but not male, fertility. In most regions, risk SNPs linked to known expression quantitative trait loci (eQTLs). Top SNPs were associated with in vivo reproductive hormone levels with the top pathways including hormone ligand binding receptors and the ovulation cycle. LARGE SCALE DATA: The full DZT GWAS summary statistics will made available after publication through the GWAS catalog (https://www.ebi.ac.uk/gwas/). LIMITATIONS, REASONS FOR CAUTION: Our study only included European ancestry cohorts. Inclusion of data from Africa (with the highest twining rate) and Asia (with the lowest rate) would illuminate further the biology of twinning and female fertility. WIDER IMPLICATIONS OF THE FINDINGS: About one in 40 babies born in the world is a twin and there is much speculation on why twinning runs in families. We hope our results will inform investigations of ovarian response in new and existing ARTs and the causes of female infertility. STUDY FUNDING/COMPETING INTEREST(S): Support for the Netherlands Twin Register came from the Netherlands Organization for Scientific Research (NWO) and The Netherlands Organization for Health Research and Development (ZonMW) grants, 904-61-193, 480-04-004, 400-05-717, Addiction-31160008, 911-09-032, Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.NL, 184.021.007), Royal Netherlands Academy of Science Professor Award (PAH/6635) to DIB, European Research Council (ERC-230374), Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH R01 HD042157-01A1) and the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health and Grand Opportunity grants 1RC2 MH089951. The QIMR Berghofer Medical Research Institute (QIMR) study was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485, 552498, 1050208, 1075175). L.Y. is funded by Australian Research Council (Grant number DE200100425). The Minnesota Center for Twin and Family Research (MCTFR) was supported in part by USPHS Grants from the National Institute on Alcohol Abuse and Alcoholism (AA09367 and AA11886) and the National Institute on Drug Abuse (DA05147, DA13240, and DA024417). The Women's Genome Health Study (WGHS) was funded by the National Heart, Lung, and Blood Institute (HL043851 and HL080467) and the National Cancer Institute (CA047988 and UM1CA182913), with support for genotyping provided by Amgen. Data collection in the Finnish Twin Registry has been supported by the Wellcome Trust Sanger Institute, the Broad Institute, ENGAGE-European Network for Genetic and Genomic Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413, National Institute of Alcohol Abuse and Alcoholism (grants AA-12502, AA-00145, AA-09203, AA15416, and K02AA018755) and the Academy of Finland (grants 100499, 205585, 118555, 141054, 264146, 308248, 312073 and 336823 to J. Kaprio). TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd and the National Institute for Health Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. For NESDA, funding was obtained from the Netherlands Organization for Scientific Research (Geestkracht program grant 10000-1002), the Center for Medical Systems Biology (CSMB, NVVO Genomics), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL), VU University's Institutes for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam, University Medical Center Groningen, Leiden University Medical Center, National Institutes of Health (NIH, ROI D0042157-01A, MH081802, Grand Opportunity grants 1 RC2 Ml-1089951 and IRC2 MH089995). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health. Computing was supported by BiG Grid, the Dutch e-Science Grid, which is financially supported by NWO. Work in the Del Bene lab was supported by the Programme Investissements d'Avenir IHU FOReSIGHT (ANR-18-IAHU-01). C.R. was supported by an EU Horizon 2020 Marie Sklodowska-Curie Action fellowship (H2020-MSCA-IF-2014 #661527). H.S. and K.S. are employees of deCODE Genetics/Amgen. The other authors declare no competing financial interests. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Fertility , Genome-Wide Association Study , Twinning, Dizygotic , Animals , Female , Humans , Pregnancy , Carrier Proteins/genetics , Fertility/genetics , Hormones , Proteins/genetics , United States , Zebrafish/genetics
11.
Biol Psychiatry Glob Open Sci ; 3(4): 958-968, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37881547

ABSTRACT

Background: Family members resemble each other in their propensity for aggression. In twin studies, approximately 50% of the variance in aggression can be explained by genetic influences. However, if there are genotype-environment correlation mechanisms, such as environmental manifestations of parental and sibling genotypes, genetic influences may partly reflect environmental influences. In this study, we investigated the importance of indirect polygenic score (PGS) effects on aggression. Methods: We modeled the effect of PGSs based on 3 genome-wide association studies: early-life aggression, educational attainment, and attention-deficit/hyperactivity disorder (ADHD). The associations with aggression were tested in a within- and between-family design (37,796 measures from 7740 individuals, ages 3-86 years [mean = 14.20 years, SE = 12.03], from 3107 families, 55% female) and in a transmitted/nontransmitted PGS design (42,649 measures from 6653 individuals, ages 3-61 years [mean = 11.81 years, SE = 8.68], from 3024 families, 55% female). All participants are enrolled in the Netherlands Twin Register. Results: We found no evidence for contributions of indirect PGS effects on aggression in either a within- and between-family design or a transmitted/nontransmitted PGS design. Results indicate significant direct effects on aggression for the PGSs based on early-life aggression, educational attainment, and ADHD, although explained variance was low (within- and between-family: early-life aggression R2 = 0.3%, early-life ADHD R2 = 0.6%, educational attainment R2 = 0.7%; transmitted/nontransmitted PGSs: early-life aggression R2 = 0.2%, early-life ADHD R2 = 0.9%, educational attainment R2 = 0.5%). Conclusions: PGSs included in the current study had a direct (but no indirect) effect on aggression, consistent with results of previous twin and family studies. Further research involving other PGSs for aggression and related phenotypes is needed to determine whether this conclusion generalizes to overall genetic influences on aggression.

12.
medRxiv ; 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37398003

ABSTRACT

Genetic studies have identified numerous regions associated with plasma fibrinogen levels in Europeans, yet missing heritability and limited inclusion of non-Europeans necessitates further studies with improved power and sensitivity. Compared with array-based genotyping, whole genome sequencing (WGS) data provides better coverage of the genome and better representation of non-European variants. To better understand the genetic landscape regulating plasma fibrinogen levels, we meta-analyzed WGS data from the NHLBI's Trans-Omics for Precision Medicine (TOPMed) program (n=32,572), with array-based genotype data from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium (n=131,340) imputed to the TOPMed or Haplotype Reference Consortium panel. We identified 18 loci that have not been identified in prior genetic studies of fibrinogen. Of these, four are driven by common variants of small effect with reported MAF at least 10% higher in African populations. Three ( SERPINA1, ZFP36L2 , and TLR10) signals contain predicted deleterious missense variants. Two loci, SOCS3 and HPN , each harbor two conditionally distinct, non-coding variants. The gene region encoding the protein chain subunits ( FGG;FGB;FGA ), contains 7 distinct signals, including one novel signal driven by rs28577061, a variant common (MAF=0.180) in African reference panels but extremely rare (MAF=0.008) in Europeans. Through phenome-wide association studies in the VA Million Veteran Program, we found associations between fibrinogen polygenic risk scores and thrombotic and inflammatory disease phenotypes, including an association with gout. Our findings demonstrate the utility of WGS to augment genetic discovery in diverse populations and offer new insights for putative mechanisms of fibrinogen regulation. Key Points: Largest and most diverse genetic study of plasma fibrinogen identifies 54 regions (18 novel), housing 69 conditionally distinct variants (20 novel).Sufficient power achieved to identify signal driven by African population variant.Links to (1) liver enzyme, blood cell and lipid genetic signals, (2) liver regulatory elements, and (3) thrombotic and inflammatory disease.

13.
Multivariate Behav Res ; : 1-13, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37439516

ABSTRACT

One type of genotype-environment interaction occurs when genetic effects on a phenotype are moderated by an environment; or when environmental effects on a phenotype are moderated by genes. Here we outline these types of genotype-environment interaction models, and propose a test of genotype-environment interaction based on the classical twin design, which includes observed genetic variables (polygenic scores: PGSs) that account for part of the genetic variance of the phenotype. We introduce environment-by-PGS interaction and the results of a simulation study to address statistical power and parameter recovery. Next, we apply the model to empirical data on anxiety and negative affect in children. The power to detect environment-by-PGS interaction depends on the heritability of the phenotype, and the strength of the PGS. The simulation results indicate that under realistic conditions of sample size, heritability and strength of the interaction, the environment-by-PGS model is a viable approach to detect genotype-environment interaction. In 7-year-old children, we defined two PGS based on the largest genetic association studies for 2 traits that are genetically correlated to childhood anxiety and negative affect, namely major depression (MDD) and intelligence (IQ). We find that common environmental influences on negative affect are amplified for children with a lower IQ-PGS.

15.
Transl Psychiatry ; 12(1): 479, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36379924

ABSTRACT

Hoarding Disorder (HD) is a mental disorder characterized by persistent difficulties discarding or parting with possessions, often resulting in cluttered living spaces, distress, and impairment. Its etiology is largely unknown, but twin studies suggest that it is moderately heritable. In this study, we pooled phenotypic and genomic data from seven international cohorts (N = 27,537 individuals) and conducted a genome wide association study (GWAS) meta-analysis of parent- or self-reported hoarding symptoms (HS). We followed up the results with gene-based and gene-set analyses, as well as leave-one-out HS polygenic risk score (PRS) analyses. To examine a possible genetic association between hoarding symptoms and other phenotypes we conducted cross-trait PRS analyses. Though we did not report any genome-wide significant SNPs, we report heritability estimates for the twin-cohorts between 26-48%, and a SNP-heritability of 11% for an unrelated sub-cohort. Cross-trait PRS analyses showed that the genetic risk for schizophrenia and autism spectrum disorder were significantly associated with hoarding symptoms. We also found suggestive evidence for an association with educational attainment. There were no significant associations with other phenotypes previously linked to HD, such as obsessive-compulsive disorder, depression, anxiety, or attention-deficit hyperactivity disorder. To conclude, we found that HS are heritable, confirming and extending previous twin studies but we had limited power to detect any genome-wide significant loci. Much larger samples will be needed to further extend these findings and reach a "gene discovery zone". To move the field forward, future research should not only include genetic analyses of quantitative hoarding traits in larger samples, but also in samples of individuals meeting strict diagnostic criteria for HD, and more ethnically diverse samples.


Subject(s)
Autism Spectrum Disorder , Hoarding Disorder , Hoarding , Obsessive-Compulsive Disorder , Humans , Genome-Wide Association Study , Hoarding Disorder/genetics , Obsessive-Compulsive Disorder/genetics
16.
Transl Psychiatry ; 12(1): 488, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36411277

ABSTRACT

Suicidal and aggressive behaviours cause significant personal and societal burden. As risk factors associated with these behaviours frequently overlap, combined approaches in predicting the behaviours may be useful in identifying those at risk for either. The current study aimed to create a model that predicted if individuals will exhibit suicidal behaviour, aggressive behaviour, both, or neither in late adolescence. A sample of 5,974 twins from the Child and Adolescent Twin Study in Sweden (CATSS) was broken down into a training (80%), tune (10%) and test (10%) set. The Netherlands Twin Register (NTR; N = 2702) was used for external validation. Our longitudinal data featured genetic, environmental, and psychosocial predictors derived from parental and self-report data. A stacked ensemble model was created which contained a gradient boosted machine, random forest, elastic net, and neural network. Model performance was transferable between CATSS and NTR (macro area under the receiver operating characteristic curve (AUC) [95% CI] AUCCATSS(test set) = 0.709 (0.671-0.747); AUCNTR = 0.685 (0.656-0.715), suggesting model generalisability across Northern Europe. The notable exception is suicidal behaviours in the NTR, which was no better than chance. The 25 highest scoring variable importance scores for the gradient boosted machines and random forest models included self-reported psychiatric symptoms in mid-adolescence, sex, and polygenic scores for psychiatric traits. The model's performance is comparable to current prediction models that use clinical interviews and is not yet suitable for clinical use. Moreover, genetic variables may have a role to play in predictive models of adolescent psychopathology.


Subject(s)
Aggression , Suicidal Ideation , Child , Humans , Adolescent , Multifactorial Inheritance , Netherlands , Risk Factors
17.
Environ Int ; 168: 107491, 2022 10.
Article in English | MEDLINE | ID: mdl-36081220

ABSTRACT

BACKGROUND: Exposure to ambient air pollution, even at low levels, is a major environmental health risk. The peripheral blood transcriptome provides a potential avenue for the elucidation of ambient air pollution related biological perturbations. We assessed the association between long-term estimates for seven priority air pollutants and perturbations in peripheral blood transcriptomics data collected in the Dutch National Twin Register (NTR) and Netherlands Study of Depression and Anxiety (NESDA) cohorts. METHODS: In both the discovery (n = 2438) and replication (n = 1567) cohort, outdoor concentration of 7 air pollutants (NO2, NOx, particulate matter (PM2.5, PM2.5abs, PM10, PMcoarse), and ultrafine particles) was predicted with land use regression models. Gene expression was assessed by Affymetrix U219 arrays. Multi-variable univariate mixed-effect models were applied to test for an association between the air pollutants and the transcriptome. Functional analysis was conducted in DAVID. RESULTS: In the discovery cohort, we observed for 335 genes (374 probes with FDR < 5 %) a perturbation in peripheral blood gene expression that was associated with long-term average levels of PM2.5. For 69 genes pooled effect estimates from the NTR and NESDA cohorts were significant. Identified genes play a role in biological pathways related to cell signaling and immune response. Sixty-two out of 69 genes had a similar direction of effect in an analysis in which we regressed the probes on differential PM2.5 exposure within monozygotic twin pairs, indicating that the observed differences in gene expression were likely driven by differences in air pollution, rather than by confounding by genetic factors. CONCLUSION: Our results indicate that PM2.5 can elicit a response in cell signaling and the immune system, both hallmarks of environmental diseases. The differential effect that we observed between air pollutants may aid in the understanding of differential health effects that have been observed with these exposures.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Gene Expression , Humans , Immunity , Particulate Matter/analysis , Particulate Matter/toxicity , Signal Transduction
18.
Proc Natl Acad Sci U S A ; 119(35): e2202764119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35998220

ABSTRACT

The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30 to 80% depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures (word reading, nonword reading, spelling, phoneme awareness, and nonword repetition) in samples of 13,633 to 33,959 participants aged 5 to 26 y. We identified genome-wide significant association with word reading (rs11208009, P = 1.098 × 10-8) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP heritability, accounting for 13 to 26% of trait variability. Genomic structural equation modeling revealed a shared genetic factor explaining most of the variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence, and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis with neuroimaging traits identified an association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to the processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide avenues for deciphering the biological underpinnings of uniquely human traits.


Subject(s)
Genome-Wide Association Study , Individuality , Reading , Speech , Adolescent , Adult , Child , Child, Preschool , Genetic Loci , Humans , Language , Polymorphism, Single Nucleotide , Young Adult
19.
PLoS One ; 17(8): e0273116, 2022.
Article in English | MEDLINE | ID: mdl-35994476

ABSTRACT

Substantial genetic correlations have been reported across psychiatric disorders and numerous cross-disorder genetic variants have been detected. To identify the genetic variants underlying general psychopathology in childhood, we performed a genome-wide association study using a total psychiatric problem score. We analyzed 6,844,199 common SNPs in 38,418 school-aged children from 20 population-based cohorts participating in the EAGLE consortium. The SNP heritability of total psychiatric problems was 5.4% (SE = 0.01) and two loci reached genome-wide significance: rs10767094 and rs202005905. We also observed an association of SBF2, a gene associated with neuroticism in previous GWAS, with total psychiatric problems. The genetic effects underlying the total score were shared with common psychiatric disorders only (attention-deficit/hyperactivity disorder, anxiety, depression, insomnia) (rG > 0.49), but not with autism or the less common adult disorders (schizophrenia, bipolar disorder, or eating disorders) (rG < 0.01). Importantly, the total psychiatric problem score also showed at least a moderate genetic correlation with intelligence, educational attainment, wellbeing, smoking, and body fat (rG > 0.29). The results suggest that many common genetic variants are associated with childhood psychiatric symptoms and related phenotypes in general instead of with specific symptoms. Further research is needed to establish causality and pleiotropic mechanisms between related traits.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Bipolar Disorder , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/psychology , Bipolar Disorder/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Humans , Polymorphism, Single Nucleotide
20.
Nat Commun ; 13(1): 2743, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35585065

ABSTRACT

We present the results of a GWAS of food liking conducted on 161,625 participants from the UK-Biobank. Liking was assessed over 139 specific foods using a 9-point scale. Genetic correlations coupled with structural equation modelling identified a multi-level hierarchical map of food-liking with three main dimensions: "Highly-palatable", "Acquired" and "Low-caloric". The Highly-palatable dimension is genetically uncorrelated from the other two, suggesting that independent processes underlie liking high reward foods. This is confirmed by genetic correlations with MRI brain traits which show with distinct associations. Comparison with the corresponding food consumption traits shows a high genetic correlation, while liking exhibits twice the heritability. GWAS analysis identified 1,401 significant food-liking associations which showed substantial agreement in the direction of effects with 11 independent cohorts. In conclusion, we created a comprehensive map of the genetic determinants and associated neurophysiological factors of food-liking.


Subject(s)
Food Preferences , Genome-Wide Association Study , Emotions , Food , Food Preferences/physiology , Humans , Reward
SELECTION OF CITATIONS
SEARCH DETAIL