Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Neurosci ; 71(9): 1951-1966, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33403589

ABSTRACT

Hippocampal sclerosis (HS) is one of the most prevalent pathological types of temporal lobe epilepsy (TLE), and it significantly affects patient prognoses. The methylation of DNA plays an important role in the development of epilepsy. However, few studies have focused on HS subtypes to determine DNA methylation profiles in TLE. This study aimed to determine the pathogenesis of TLE from an epigenetic perspective in patients with TLE-HS type I (TLE-HSTI) and TLE without HS (TLE-nHS) using whole-genome bisulfite sequencing (WGBS). We defined 1171 hypermethylated and 2537 hypomethylated regions and found 632 differentially methylated genes (DMG) in the promoter region that were primarily involved in the regulation of various aspects of epilepsy development. Twelve DMG overlapped with differentially expressed genes (DEG) in the promoter region, and RT-qPCR findings revealed significant overexpression of the SBNO2, CBX3, RASAL3, and TMBIM4 genes in TLE-HSTI. We present the first systematic analysis of methylation profiles of TLE-HSTI and TLE-nHS from an epigenetic perspective using WGBS. Overall, our preliminary data highlight the underlying mechanism of TLE-HSTI, providing a new perspective for guiding treatment of TLE.


Subject(s)
DNA Methylation , Epilepsy, Temporal Lobe/genetics , Hippocampus/pathology , Adolescent , Adult , Chromosomal Proteins, Non-Histone/genetics , Epigenome , Epilepsy, Temporal Lobe/pathology , Female , Humans , Male , Membrane Proteins/genetics , Repressor Proteins/genetics , Sclerosis , ras GTPase-Activating Proteins/genetics
2.
Cancer Res ; 80(3): 499-509, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31723000

ABSTRACT

Anti-VEGF therapy prolongs recurrence-free survival in patients with glioblastoma but does not improve overall survival. To address this discrepancy, we investigated immunologic resistance mechanisms to anti-VEGF therapy in glioma models. A screening of immune-associated alterations in tumors after anti-VEGF treatment revealed a dose-dependent upregulation of regulatory T-cell (Treg) signature genes. Enhanced numbers of Tregs were observed in spleens of tumor-bearing mice and later in tumors after anti-VEGF treatment. Elimination of Tregs with CD25 blockade before anti-VEGF treatment restored IFNγ production from CD8+ T cells and improved antitumor response from anti-VEGF therapy. The treated tumors overexpressed the glutamate/cystine antiporter SLC7A11/xCT that led to elevated extracellular glutamate in these tumors. Glutamate promoted Treg proliferation, activation, suppressive function, and metabotropic glutamate receptor 1 (mGlutR1) expression. We propose that VEGF blockade coupled with glioma-derived glutamate induces systemic and intratumoral immunosuppression by promoting Treg overrepresentation and function, which can be pre-emptively overcome through Treg depletion for enhanced antitumor effects. SIGNIFICANCE: Resistance to VEGF therapy in glioblastoma is driven by upregulation of Tregs, combined blockade of VEGF, and Tregs may provide an additive antitumor effect for treating glioblastoma.


Subject(s)
Bevacizumab/pharmacology , Drug Resistance, Neoplasm , Glioblastoma/immunology , Glutamic Acid/metabolism , T-Lymphocytes, Regulatory/immunology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Antineoplastic Agents, Immunological/pharmacology , Apoptosis , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Female , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/metabolism , Tumor Cells, Cultured , Vascular Endothelial Growth Factor A/immunology
3.
Nat Commun ; 10(1): 4016, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31488817

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy targeting solid tumors has stagnated as a result of tumor heterogeneity, immunosuppressive microenvironments, and inadequate intratumoral T cell trafficking and persistence. Early (≤3 days) intratumoral presentation of CAR T cells post-treatment is a superior predictor of survival than peripheral persistence. Therefore, we have co-opted IL-8 release from tumors to enhance intratumoral T-cell trafficking through a CAR design for maximal antitumor activity in solid tumors. Here, we demonstrate that IL-8 receptor, CXCR1 or CXCR2, modified CARs markedly enhance migration and persistence of T cells in the tumor, which induce complete tumor regression and long-lasting immunologic memory in pre-clinical models of aggressive tumors such as glioblastoma, ovarian and pancreatic cancer.


Subject(s)
Glioblastoma/immunology , Immunotherapy, Adoptive , Interleukin-8/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Interleukin-8A/metabolism , Receptors, Interleukin-8B/metabolism , T-Lymphocytes/immunology , Animals , Antigens, Neoplasm/immunology , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Cytokines/metabolism , Disease Models, Animal , Female , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Mice, Inbred NOD , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...