Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(22): 6560-6567, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38775289

ABSTRACT

Kagome lattice AV3Sb5 has attracted tremendous interest because it hosts correlated and topological physics. However, an in-depth understanding of the temperature-driven electronic states in AV3Sb5 is elusive. Here we use scanning tunneling microscopy to directly capture the rotational symmetry-breaking effect in KV3Sb5. Through both topography and spectroscopic imaging of defect-free KV3Sb5, we observe a charge density wave (CDW) phase transition from an a0 × a0 atomic lattice to a robust 2a0 × 2a0 superlattice upon cooling the sample to 60 K. An individual Sb-atom vacancy in KV3Sb5 further gives rise to the local Friedel oscillation (FO), visible as periodic charge modulations in spectroscopic maps. The rotational symmetry of the FO tends to break at the temperature lower than 40 K. Moreover, the FO intensity shows an obvious competition against the intensity of the CDW. Our results reveal a tantalizing electronic nematicity in KV3Sb5, highlighting the multiorbital correlation in the kagome lattice framework.

2.
Adv Sci (Weinh) ; 10(19): e2300789, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37097711

ABSTRACT

Monolayer transition metal dichalcogenides (TMDs) can host exotic phenomena such as correlated insulating and charge-density-wave (CDW) phases. Such properties are strongly dependent on the precise atomic arrangements. Strain, as an effective tuning parameter in atomic arrangements, has been widely used for tailoring material's structures and related properties, yet to date, a convincing demonstration of strain-induced dedicate phase transition at nanometer scale in monolayer TMDs has been lacking. Here, a strain engineering technique is developed to controllably introduce out-of-plane atomic deformations in monolayer CDW material 1T-NbSe2 . The scanning tunneling microscopy and spectroscopy (STM and STS) measurements, accompanied by first-principles calculations, demonstrate that the CDW phase of 1T-NbSe2 can survive under both tensile and compressive strains even up to 5%. Moreover, significant strain-induced phase transitions are observed, i.e., tensile (compressive) strains can drive 1T-NbSe2 from an intrinsic-correlated insulator into a band insulator (metal). Furthermore, experimental evidence of the multiple electronic phase coexistence at the nanoscale is provided. The results shed new lights on the strain engineering of correlated insulator and useful for design and development of strain-related nanodevices.

3.
ACS Nano ; 17(5): 4387-4395, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36802507

ABSTRACT

Ullmann-like on-surface synthesis is one of the most appropriate approaches for the bottom-up fabrication of covalent organic nanostructures and many successes have been achieved. The Ullmann reaction requires the oxidative addition of a catalyst (a metal atom in most cases): the metal atom will insert into a carbon-halogen bond, forming organometallic intermediates, which are then reductively eliminated and form C-C covalent bonds. As a result, traditional Ullmann coupling involves reactions of multiple steps, making it difficult to control the final product. Moreover, forming the organometallic intermediates will potentially poison the metal surface catalytic reactivity. In the study, we used the 2D hBN, an atomically thin sp2-hybridized sheet with a large band gap, to protect the Rh(111) metal surface. It is an ideal 2D platform to decouple the molecular precursor from the Rh(111) surface while maintaining the reactivity of Rh(111). We realize an Ullmann-like coupling of a planar biphenylene-based molecule, i.e., 1,8-dibromobiphenylene (BPBr2), on an hBN/Rh(111) surface with an ultrahigh selectivity of the biphenylene dimer product, containing 4-, 6-, and 8-membered rings. The reaction mechanism, including electron wave penetration and the template effect of the hBN, is elucidated by combining low-temperature scanning tunneling microscopy and density functional theory calculations. Our findings are expected to play an essential role regarding the high-yield fabrication of functional nanostructures for future information devices.

4.
Nat Commun ; 13(1): 1843, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35383190

ABSTRACT

Chirality is essential for various phenomena in life and matter. However, chirality and its switching in electronic superlattices, such as charge density wave (CDW) superlattices, remain elusive. In this study, we characterize the chirality switching with atom-resolution imaging in a single-layer NbSe2 CDW superlattice by the technique of scanning tunneling microscopy. The atomic arrangement of the CDW superlattice is found continuous and intact although its chirality is switched. Several intermediate states are tracked by time-resolved imaging, revealing the fast and dynamic chirality transition. Importantly, the switching is reversibly realized with an external electric field. Our findings unveil the delicate switching process of chiral CDW superlattice in a two-dimensional (2D) crystal down to the atomic scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...