Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 230
Filter
1.
Clin Rheumatol ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724819

ABSTRACT

Behçet's syndrome (BS) is a variant vasculitis that can involve multiple organs with inflammatory manifestations. This study aimed to provide a more comprehensive analysis of the clinical phenotypes and characteristics of BS patients. We enrolled 2792 BS patients referred from China nationwide to Huadong Hospital Affiliated to Fudan University from October 2012 to December 2022. Detailed assessments of demographic information, clinical manifestations, laboratory results, gastroscopy, and medical imaging were conducted. Cluster analysis was performed based on 13 variables to determine the clinical phenotypes, and each phenotype was characterized according to the features of BS patients. A total of 1834 BS patients were included, while 958 invalid patients were excluded. The median age at onset was 31 years (IQR, 24-40 years), and the median disease duration was 10 years (IQR, 5-15 years). Eight clusters were identified, including mucocutaneous (n = 655, 35.7%), gastrointestinal (n = 363, 19.8%), articular (n = 184, 10%), ocular (n = 223, 12.2%), cardiovascular (n = 119, 6.5%), neurological (n = 118, 6.4%), vascular (n = 114, 6.2%), and hematological phenotype (n = 58, 3.2%). Ocular (RR = 1.672 (95% CI, 1.327-2.106); P < 0.001), gastrointestinal (RR = = 1.194 (95% CI, 1.031-1.383); P = 0.018), cardiovascular (RR = = 2.582 (95% CI, 1.842-3.620); P < 0.001), and vascular (RR = = 2.288 (95% CI, 1.600-3.272); P < 0.001) involvement were more prevalent in male BS patients, while the hematological (RR = 0.528 (95% CI, 0.360-0.776); P = 0.001) involvement was more common among female patients. BS presents significant heterogeneity and gender differences. The eight phenotypes of BS patients we propose hold the potential to assist clinicians in devising more personalized treatment and follow-up strategies. Key Points • This cluster analysis divided adult-onset BS into eight clinical phenotypes. • BS demonstrates a high level of clinical heterogeneity and gender differences. • Hematologic phenotypes of BS present distinctive clinical characteristics.

2.
Bioresour Technol ; 401: 130739, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670291

ABSTRACT

A modified biodegradable plastic (PLA/PBAT) was developed by through covalent bonding with proteinase K, porcine pancreatic lipase, or amylase, and was then investigated in anaerobic co-digestion mixed with food waste. Fluorescence microscope validated that enzymes could remain stable in modified the plastic, even after co-digestion. The results of thermophilic anaerobic co-digestion showed that, degradation of the plastic modified with Proteinase K increased from 5.21 ± 0.63 % to 29.70 ± 1.86 % within 30 days compare to blank. Additionally, it was observed that the cumulative methane production increased from 240.9 ± 0.5 to 265.4 ± 1.8 mL/gVS, and the methane production cycle was shortened from 24 to 20 days. Interestingly, the kinetic model suggested that the modified the plastic promoted the overall hydrolysis progression of anaerobic co-digestion, possibly as a result of the enhanced activities of Bacteroidota and Thermotogota. In conclusion, under anaerobic co-digestion, the modified the plastic not only achieved effective degradation but also facilitated the co-digestion process.


Subject(s)
Biodegradable Plastics , Methane , Anaerobiosis , Methane/metabolism , Biodegradable Plastics/chemistry , Biodegradation, Environmental , Lipase/metabolism , Swine , Animals , Food , Waste Products , Amylases/metabolism , Kinetics , Hydrolysis , Refuse Disposal/methods , Food Loss and Waste
3.
Environ Sci Technol ; 58(18): 7826-7837, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38653213

ABSTRACT

The interaction effects between the main components (proteins (P), carbohydrates (C), and lipids (L)) of protein-rich biomass during microwave-assisted pyrolysis were investigated in depth with an exploration of individual pyrolysis and copyrolysis (PC, PL, and CL) of model compounds. The average heating rate of P was higher than those of C and L, and the interactions in all copyrolysis groups reduced the max instant heating rate. The synergistic extent (S) of PC and PL for bio-oil yield was 16.78 and 18.24%, respectively, indicating that the interactions promoted the production of bio-oil. Besides, all of the copyrolysis groups exhibited a synergistic effect on biochar production (S = 19.43-28.24%), while inhibiting the gas generation, with S ranging from -20.17 to -6.09%. Regarding the gaseous products, apart from H2, P, C, and L primarily generated CO2, CO, and CH4, respectively. Regarding bio-oil composition, the interactions occurring within PC, PL, and CL exhibited a significantly synergistic effect (S = 47.81-412.96%) on the formation of N-heterocyclics/amides, amides/nitriles, and acids/esters, respectively. Finally, the favorable applicability of the proposed interaction effects was verified with microalgae. This study offers valuable insights for understanding the microwave-assisted pyrolysis of protein-rich biomass, laying the groundwork for further research and process optimization.


Subject(s)
Biomass , Microwaves , Pyrolysis , Proteins/chemistry , Lipids/chemistry , Charcoal/chemistry , Carbohydrates/chemistry , Biofuels
4.
FEBS J ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676954

ABSTRACT

Inflammatory signals from immunological cells may cause damage to intestinal epithelial cells (IECs), resulting in intestinal inflammation and tissue impairment. Interferon-γ-inducible protein 16 (IFI16) was reported to be involved in the pathogenesis of Behçet's syndrome (BS). This study aimed to investigate how inflammatory cytokines released by immunological cells and IFI16 participate in the pathogenesis of intestinal BS. RNA sequencing and real-time quantitative PCR (qPCR) showed that the positive regulation of tumor necrosis factor-α (TNF-α) production in peripheral blood mononuclear cells (PBMCs) of intestinal BS patients may be related to the upregulation of polo like kinase 1 (PLK1) in PBMCs (P = 0.012). The plasma TNF-α protein level in intestinal BS was significantly higher than in healthy controls (HCs; P = 0.009). PBMCs of intestinal BS patients and HCs were co-cultured with human normal IECs (NCM460) to explore the interaction between immunological cells and IECs. Using IFI16 knockdown, PBMC-NCM460 co-culture, TNF-α neutralizing monoclonal antibody (mAb), stimulator of interferon genes (STING) agonist 2'3'-cGAMP, and the PLK1 inhibitor SBE 13 HCL, we found that PLK1 promotes the secretion of TNF-α from PBMCs of intestinal BS patients, which causes overexpression of IFI16 and induces apoptosis of IECs via the STING-TBK1 pathway. The expressions of IFI16, TNF-α, cleaved caspase 3, phosphorylated STING (pSTING) and phosphorylated tank binding kinase 1 (pTBK1) in the intestinal ulcer tissue of BS patients were significantly higher than that of HCs (all P < 0.05). PLK1 in PBMCs of intestinal BS patients increased TNF-α secretion, inducing IEC apoptosis via activation of the IFI16-STING-TBK1 pathway. PLK1 and the IFI16-STING-TBK1 pathway may be new therapeutic targets for intestinal BS.

5.
Food Sci Nutr ; 12(4): 2346-2363, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628176

ABSTRACT

A safety evaluation was performed of Symbiota®, which is made by a proprietary anaerobic fermentation process of soybean with multistrains of probiotics and a yeast. The battery of genotoxicity studies showed that Symbiota® has no genotoxic effects. Safety and tolerability were further assessed by acute or repeated dose 28- and 90-day rodent studies, and no alterations in clinical observations, ophthalmological examination, blood chemistry, urinalysis, or hematology were observed between the control group and the different dosing groups (1.5, 5, and 15 mL/kg/day). There were no adverse effects on specific tissues or organs in terms of weight and histopathology. Importantly, the Symbiota® treatment did not perturb hormones and other endocrine-related endpoints. Of note, the No-Observed-Adverse-Effect-Level was determined to be 15 mL/kg/day in rats. Moreover, a randomized, double-blind, placebo-controlled clinical trial was recently conducted with healthy volunteers who consumed 8 mL/day of placebo or Symbiota® for 8 weeks. Only mild adverse events were reported in both groups, and the blood chemistry and blood cell profiles were also similar between the two groups. In summary, this study concluded that the oral consumption of Symbiota® at 8 mL/day by the general population does not pose any human health concerns.

6.
PLoS One ; 19(4): e0300633, 2024.
Article in English | MEDLINE | ID: mdl-38657002

ABSTRACT

Domestic rabbits (Oryctolagus cuniculus) are the fourth most common species admitted to the British Columbia Society for the Prevention of Cruelty to Animals (BC SPCA) shelter system. However, shelter data analysis has largely focused on cats and dogs and little is known about the population dynamics of rabbits in shelters. We analyzed five years of rabbit records (n = 1567) at the BC SPCA to identify trends in intake and predictors of length of stay (LOS) of rabbits. The majority of rabbits were surrendered by their owners (40.2%), with most rabbits being surrendered for human-related reasons (96.9%). Overall, rabbit intakes decreased over the study period. When analyzing by month of intake, rabbit intakes were found to be the highest in May. Most rabbits in our data were adults (46.7%), non-brachycephalic (66.7%), erect-eared (82.5%), short-furred (76.2%), and subsequently adopted (80.3%). The median LOS of rabbits was 29 days, highlighting the pressing need to improve their time to adoption. A linear model was constructed to identify predictors of LOS of adopted rabbits (n = 1203) and revealed that intake year, intake month, source of intake, age, cephalic type, and breed size significantly predicted time to adoption for rabbits (F(37, 1165) = 7.95, p < 2.2e-16, adjusted R2 = 0.18). These findings help characterize shelter population dynamics for rabbits, shed light on the challenges associated with unwanted rabbits, and offer a foundation for animal shelters to design programs and marketing strategies tailored to reduce LOS of rabbits with particular characteristics. Shelter rabbits represent an understudied population and our study highlights the importance of further research in companion rabbits.


Subject(s)
Animal Welfare , Animals , Rabbits , British Columbia , Male , Female , Humans
7.
J Biopharm Stat ; : 1-13, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515248

ABSTRACT

There is growing interest in understanding geographic patterns of medical device-related adverse events (AEs). A spatial scan method combined with the likelihood ratio test (LRT) for spatial-cluster signal detection over the geographical region is universally used. The spatial scan method used a moving window to scan the entire study region and collected some candidate sub-regions from which the spatial-cluster signal(s) will be found. However, it has some challenges, especially in computation. First, the computational cost increased when the number of sub-regions increased. Second, the computational cost may increase if a large spatial-cluster pattern is present and a flexible-shaped window is used. To reduce the computational cost, we propose a Bayesian nonparametric method that combines the ideas of Markov random field (MRF) to leverage geographical information to find potential signal clusters. Then, the LRT is applied for the detection of spatial cluster signals. The proposed method provides an ability to capture both locally spatially contiguous clusters and globally discontiguous clusters, and is manifested to be effective and tractable using hypothetical Left Ventricular Assist Device (LVAD) data as an illustration.

8.
J Colloid Interface Sci ; 665: 399-412, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38537588

ABSTRACT

Photocatalytic selective oxidation plays an important role in developing green chemistry. However, it is challenging to design an efficient photocatalyst for controlling the selectivity of photocatalytic oxidation reaction and exploring its detailed mechanism. Here, we synthesized three conjugated microporous polymers (CMPs) with D-A structures, named M-SATE-CMPs (MZn, Cu and Co), with different d-band centers based on different metal centers, resulting in the discrepancy in adsorption and activation capacities for the reactants, which produces the selectivity of ß-keto esters being catalyzed into α-hydroperoxide ß-keto esters (ROOH) or to α-hydroxyl ß-keto esters (ROH). Density functional theory (DFT) calculations also demonstrate that the adsorption and activation capacities of the metal active centers in M-SATE-CMPs (MZn, Cu and Co) for ROOH are the key factors to influence the photocatalytic selective oxidation of ß-keto ester. This study provides a promising strategy for designing a metallaphotoredox catalyst whose photocatalytic selectivity depends on the d-band center of metal site in the catalyst.

9.
Heliyon ; 10(5): e27110, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38444481

ABSTRACT

Heart failure is a continuously developing syndrome of cardiac insufficiency caused by diseases, which becomes a major disease endangering human health as well as one of the main causes of death in patients with cardiovascular diseases. The occurrence of heart failure is related to hemodynamic abnormalities, neuroendocrine hormones, myocardial damage, myocardial remodeling etc, lead to the clinical manifestations including dyspnea, fatigue and fluid retention with complex pathophysiological mechanisms. Currently available drugs such as cardiac glycoside, diuretic, angiotensin-converting enzyme inhibitor, vasodilator and ß receptor blocker etc are widely used for the treatment of heart failure. In particular, natural products and related active ingredients have the characteristics of mild efficacy, low toxicity, multi-target comprehensive efficacy, and have obvious advantages in restoring cardiac function, reducing energy disorder and improving quality of life. In this review, we mainly focus on the recent advance including mechanisms and active ingredients of natural products for the treatment of heart failure, which will provide the inspiration for the development of more potent clinical drugs against heart failure.

10.
Water Res X ; 22: 100214, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38433850

ABSTRACT

In this study, enhanced pyridine bio-photodegradation with assistance of electricity was achieved. Meanwhile, photoelectron-hole played a vital role in accelerating pyridine biomineralization. The significant separation of photoelectron-hole was achieved with an external electric field, which provided sufficient electron donors and acceptors for pyridine biodegradation. The enhanced electron transport system activity also revealed the full utilization of photoelectron-hole by microbes at semiconductor-microbe interface with assistance of electricity. Microbial community analysis confirmed the enrichment of functional species related to pyridine biodegradation and electron transfer. Microbial function analysis and microbial co-occurrence networks analysis indicated that upregulated functional genes and positive interactions of different species were the important reasons for enhanced pyridine bio-photodegradation with external electric field. A possible mechanism of enhanced pyridine biodegradation was proposed, i.e., more photoelectrons and holes of semiconductors were utilized by microbes to accelerate reduction and oxidation of pyridine with the assistance of electrical stimulation. The excellent performance of the photoelectrical biodegradation system showed a potential alternative for recalcitrant organic wastewater treatment.

11.
Elife ; 122024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393970

ABSTRACT

Serine(S)/threonine(T)-glutamine(Q) cluster domains (SCDs), polyglutamine (polyQ) tracts and polyglutamine/asparagine (polyQ/N) tracts are Q-rich motifs found in many proteins. SCDs often are intrinsically disordered regions that mediate protein phosphorylation and protein-protein interactions. PolyQ and polyQ/N tracts are structurally flexible sequences that trigger protein aggregation. We report that due to their high percentages of STQ or STQN amino acid content, four SCDs and three prion-causing Q/N-rich motifs of yeast proteins possess autonomous protein expression-enhancing activities. Since these Q-rich motifs can endow proteins with structural and functional plasticity, we suggest that they represent useful toolkits for evolutionary novelty. Comparative Gene Ontology (GO) analyses of the near-complete proteomes of 26 representative model eukaryotes reveal that Q-rich motifs prevail in proteins involved in specialized biological processes, including Saccharomyces cerevisiae RNA-mediated transposition and pseudohyphal growth, Candida albicans filamentous growth, ciliate peptidyl-glutamic acid modification and microtubule-based movement, Tetrahymena thermophila xylan catabolism and meiosis, Dictyostelium discoideum development and sexual cycles, Plasmodium falciparum infection, and the nervous systems of Drosophila melanogaster, Mus musculus and Homo sapiens. We also show that Q-rich-motif proteins are expanded massively in 10 ciliates with reassigned TAAQ and TAGQ codons. Notably, the usage frequency of CAGQ is much lower in ciliates with reassigned TAAQ and TAGQ codons than in organisms with expanded and unstable Q runs (e.g. D. melanogaster and H. sapiens), indicating that the use of noncanonical stop codons in ciliates may have coevolved with codon usage biases to avoid triplet repeat disorders mediated by CAG/GTC replication slippage.


Subject(s)
Dictyostelium , Drosophila melanogaster , Animals , Mice , Codon, Terminator/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Dictyostelium/genetics , Fungal Proteins/metabolism , Glutamine/metabolism
12.
Adv Mater ; : e2311145, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334458

ABSTRACT

High-quality perovskite films are essential for achieving high performance of optoelectronic devices; However, solution-processed perovskite films are known to suffer from compositional and structural inhomogeneity due to lack of systematic control over the kinetics during the formation. Here, the microscopic homogeneity of perovskite films is successfully enhanced by modulating the conversion reaction kinetics using a catalyst-like system generated by a foaming agent. The chemical and structural evolution during this catalytic conversion is revealed by a multimodal synchrotron toolkit with spatial resolutions spanning many length scales. Combining these insights with computational investigations, a cyclic conversion pathway model is developed that yields exceptional perovskite homogeneity due to enhanced conversion, having a power conversion efficiency of 24.51% for photovoltaic devices. This work establishes a systematic link between processing of precursor and homogeneity of the perovskite films.

13.
ACS Appl Mater Interfaces ; 16(9): 11489-11496, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38393972

ABSTRACT

The freedom from efficiency droop motivates monochromatic lasers to progress in general lighting applications due to the demand for more efficient and sustainable light sources. Still, a white light based on monochromatic lasers with high lighting quality, such as a high color rendering ability, an angle-independent output, and a speckle-free illumination, has not yet been fabricated nor demonstrated. Random lasers, with the special mechanism caused by multiple scattering, the angle-free emission, and the uncomplicated fabrication processes, inspire us to investigate the feasibility of utilizing them in general lighting. In this work, a white random laser with a high color rendering index (CRI) value, regardless of pumping energy and observing direction, was performed and discussed. We also investigated the stability of white RL as its CIE chromaticity coordinates exhibit negligible differences with increasing pump energy density, retaining its high-CRI measurement. Also, it exhibits angle-independent emission while having a high color rendering ability. After passing through a scattering film, it generated no speckles compared to the conventional laser. We demonstrated the advances in white laser illumination, showing that a white random laser is promising to be applied for high-brightness illumination, biological-friendly lighting, accurate color selections, and medical sensing.

14.
Nature ; 625(7995): 516-522, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38233617

ABSTRACT

Perovskite solar cells (PSCs) comprise a solid perovskite absorber sandwiched between several layers of different charge-selective materials, ensuring unidirectional current flow and high voltage output of the devices1,2. A 'buffer material' between the electron-selective layer and the metal electrode in p-type/intrinsic/n-type (p-i-n) PSCs (also known as inverted PSCs) enables electrons to flow from the electron-selective layer to the electrode3-5. Furthermore, it acts as a barrier inhibiting the inter-diffusion of harmful species into or degradation products out of the perovskite absorber6-8. Thus far, evaporable organic molecules9,10 and atomic-layer-deposited metal oxides11,12 have been successful, but each has specific imperfections. Here we report a chemically stable and multifunctional buffer material, ytterbium oxide (YbOx), for p-i-n PSCs by scalable thermal evaporation deposition. We used this YbOx buffer in the p-i-n PSCs with a narrow-bandgap perovskite absorber, yielding a certified power conversion efficiency of more than 25%. We also demonstrate the broad applicability of YbOx in enabling highly efficient PSCs from various types of perovskite absorber layer, delivering state-of-the-art efficiencies of 20.1% for the wide-bandgap perovskite absorber and 22.1% for the mid-bandgap perovskite absorber, respectively. Moreover, when subjected to ISOS-L-3 accelerated ageing, encapsulated devices with YbOx exhibit markedly enhanced device stability.

15.
Gastrointest Endosc ; 99(2): 155-165.e4, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37820930

ABSTRACT

BACKGROUND AND AIMS: The lack of tissue traction and instrument dexterity to allow for adequate visualization and effective dissection were the main issues in performing endoscopic submucosal dissection (ESD). Robot-assisted systems may provide advantages. In this study we developed a novel transendoscopic telerobotic system and evaluated its performance in ESD. METHODS: A miniature dual-arm robotic endoscopic assistant for minimally invasive surgery (DREAMS) was developed. The DREAMS system contained the current smallest robotic ESD instruments and was compatible with the commercially available dual-channel endoscope. After the system was established, a prospective randomized controlled study was conducted to validate the performance of the DREAMS-assisted ESD in terms of efficacy, safety, and workload by comparing it with the conventional technique. RESULTS: Two robotic instruments can achieve safe collaboration and provide sufficient visualization and efficient dissection during ESD. Forty ESDs in the stomach and esophagus of 8 pigs were completed by DREAMS-assisted ESD or conventional ESD. Submucosal dissection time was comparable between the 2 techniques, but DREAMS-assisted ESD demonstrated a significantly lower muscular injury rate (15% vs 50%, P = .018) and workload scores (22.30 vs 32.45, P < .001). In the subgroup analysis of esophageal ESD, DREAMS-assisted ESD showed significantly improved submucosal dissection time (6.45 vs 16.37 minutes, P = .002), muscular injury rate (25% vs 87.5%, P = .041), and workload (21.13 vs 40.63, P = .001). CONCLUSIONS: We developed a novel transendoscopic telerobotic system, named DREAMS. The safety profile and technical feasibility of ESD were significantly improved with the assistance of the DREAMS system, especially in the narrower esophageal lumen.


Subject(s)
Endoscopic Mucosal Resection , Robotic Surgical Procedures , Animals , Endoscopic Mucosal Resection/instrumentation , Endoscopic Mucosal Resection/methods , Esophagus/surgery , Prospective Studies , Stomach/surgery , Swine , Treatment Outcome , Robotic Surgical Procedures/instrumentation , Robotic Surgical Procedures/methods
16.
J Am Chem Soc ; 145(49): 27054-27066, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38040669

ABSTRACT

Single-atom catalysts (SACs) featuring M-N-C moieties have garnered significant attention as efficient electrocatalysts for the oxygen reduction reaction (ORR). However, the role of the dynamic M-N configuration of SACs induced by the derived frameworks under applied ORR potentials remains poorly understood. Herein, we conduct a comprehensive investigation using multiple operando techniques to assess the dynamic configurations of Cu SACs under various microstructural interface (MSI) regulations by anchoring atomic Cu on g-C3N4 and zeolitic imidazolate framework (ZIF) substrates. Cu SACs supported on g-C3N4 exhibit symmetric Cu-N configurations characterized by a reversibly adaptive nature under operational conditions, which leads to their excellent ORR catalytic activity. In contrast, the Cu-N configuration in ZIF-derived Cu SACs undergoes irreversible structural changes during the ORR process, in which the elongated Cu-N pair is unstable and breaks during the ORR, acting as a competing reaction against the ORR and resulting in high overpotential requirements. Crucially, operando time-resolved X-ray absorption spectroscopy (TR-XAS) and Raman results unequivocally reveal the reversibly adapting properties of the local Cu-N configuration in atomic Cu-anchored g-C3N4, which have been overlooked in numerous literatures. All findings provide valuable insights into the potential-driven characteristics of atomic electrocatalysts during target reactions and offer a systematic approach to study atomic electrocatalysts and their corresponding catalytic behaviors.

17.
Opt Express ; 31(20): 33403-33404, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859123

ABSTRACT

We correct the error in [Opt. Express31, 1103(2023)10.1364/OE.478613] Fig. 5(c). The unit of the vertical axis in the figure should be arbitrary units, not dB. All the conclusions are not changed after the correction.

18.
Am J Transl Res ; 15(8): 5071-5084, 2023.
Article in English | MEDLINE | ID: mdl-37692948

ABSTRACT

BACKGROUND: Icarin's mechanism of action in osteoarthritis (OA) was explored using network pharmacology and the GEO database, and then further validated using molecular docking. METHODS: GEO database using network pharmacology identified differential genes in OA based on Icariin's possible targets predicted by pharmmapper database. Combining the differentially expressed genes in OA with the OA-related targets, the overlapping targets were removed. In order to determine what Icariin's core targets are for treating OA, PPI network analysis was performed using OA-related targets and possible Icariin targets. Furthermore, molecular docking was used to verify the chemical's binding to the targets. Final steps included Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Cytoscape was used to construct a network of compound-target-pathway-disease. RESULTS: Protein-protein interactions between overlapping targets revealed 151 intersection targets based on a network analysis. The top ten targets with the highest enrichment scores were SRC, MAPK1, HSP90AA1, AKT1, PTPN11, ESR1, EGFR, RhoA, JAK2, and MAPK14. KEGG enrichment analysis showed that the pathways at which Icariin intervention occurs include the OA including FOXO signaling pathway, and estrogen signaling pathway. The GO analysis result showed that various biologic processes such as proteolysis, angiogenesis, innate immune response, and positive regulation of inflammatory response were involved in treatment. Molecular docking analysis confirmed that Icariin could bind well to the targets through intermolecular forces. CONCLUSION: With its multi-targeting and multi-pathway characteristics, Icariin is a promising candidate drug for treating OA.

19.
Chemosphere ; 344: 140300, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37777089

ABSTRACT

Surface electron transport and transfer of catalysts have important consequences for persulfate (PS) activation in PS system. In this paper, an electron-rich Cu-beta zeolites catalyst was synthesized utilizing a straightforward solid-state ion exchange technique to efficiently degrade sulfadiazine. The X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR) results revealed that Cu element substitutes Al element and enters the beta molecular sieve framework smoothly. Furthermore, the X-ray photoelectron spectroscopy (XPS) measurements demonstrated that the Cu-beta catalyst is primarily Cu0. Cu-beta zeolites catalyst can exhibit excellent catalytic activity to degrade sulfadiazine with the oxidant of PS. The optimal sulfadiazine removal performance was explored by adjusting reaction parameters, including sulfadiazine concentration, catalyst dosage, oxidant dosage, and solution pH. The sulfadiazine removal efficiency in the Cu-beta zeolites/PS system could reach 90.5% at the optimal reaction condition ([PS]0 = 0.5 g/L, [Cu-beta zeolites]0 = 1.0 g/L, pH = 7.0) with 50 mg/L of sulfadiazine. Meanwhile, The degradation efficiency was less affected by anionic interference (Cl-, SO4-, HCO3-). The surface electron transport and transfer of the Cu-beta zeolites catalyst were significant causes for the remarkable degradation performance. According to electron paramagnetic resonance (EPR) and quenching studies, the Cu-beta zeolites/PS system was mostly dominated by SO4•- in the degradation of sulfadiazine. Furthermore, two possible pathways for sulfadiazine degradation were proposed according to the analysis of intermediate products detected by the liquid chromatography-mass spectrometry (LC-MS).


Subject(s)
Water Pollutants, Chemical , Zeolites , Sulfadiazine , Oxidation-Reduction , Electrons , Oxidants , Water Pollutants, Chemical/analysis
20.
Mycology ; 14(3): 190-203, 2023.
Article in English | MEDLINE | ID: mdl-37583457

ABSTRACT

Phyllosticta (Phyllostictaceae, Botryosphaeriales) species are widely distributed globally and constitute a diverse group of pathogenic and endophytic fungi associated with a broad range of plant hosts. In this study, four new species of Phyllosticta, i.e. P. endophytica, P. jiangxiensis, P. machili, and P. xinyuensis, were described using morphological characteristics and multi-locus phylogeny based on the internal transcribed spacer region (ITS) with intervening 5.8S rRNA gene, large subunit of rRNA gene (nrLSU), translation elongation factor 1-alpha gene (tef1), actin gene (act), and glyceraldehyde-3-phosphate dehydrogenase gene (gapdh). Phyllosticta machili is the first species of this genus reported to infect plants of the Machilus genus.

SELECTION OF CITATIONS
SEARCH DETAIL
...