Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Front Vet Sci ; 11: 1364815, 2024.
Article in English | MEDLINE | ID: mdl-38435369

ABSTRACT

Exogenous supplementation of guanidinoacetic acid can mechanistically regulate the energy distribution in muscle cells. This study aimed to investigate the effects of guanidinoacetic acid supplementation on liver and breast muscle fat deposition, lipid levels, and lipid metabolism-related gene expression in ducks. We randomly divided 480 42 days-old female Jiaji ducks into four groups with six replicates and 20 ducks for each replicate. The control group was fed the basal diet, and the experimental groups were fed the basal diet with 400, 600, and 800 mg/kg (GA400, GA600, and GA800) guanidinoacetic acid, respectively. Compared with the control group, (1) the total cholesterol (p = 0.0262), triglycerides (p = 0.0357), malondialdehyde (p = 0.0452) contents were lower in GA400, GA600 and GA800 in the liver; (2) the total cholesterol (p = 0.0365), triglycerides (p = 0.0459), and malondialdehyde (p = 0.0326) contents in breast muscle were decreased in GA400, GA600 and GA800; (3) the high density lipoprotein (p = 0.0356) and apolipoprotein-A1 (p = 0.0125) contents were increased in GA600 in the liver; (4) the apolipoprotein-A1 contents (p = 0.0489) in breast muscle were higher in GA600 and GA800; (5) the lipoprotein lipase contents (p = 0.0325) in the liver were higher in GA600 and GA800; (6) the malate dehydrogenase contents (p = 0.0269) in breast muscle were lower in GA400, GA600, and GA800; (7) the insulin induced gene 1 (p = 0.0326), fatty acid transport protein 1 (p = 0.0412), and lipoprotein lipase (p = 0.0235) relative expression were higher in GA400, GA600, and GA800 in the liver; (8) the insulin induced gene 1 (p = 0.0269), fatty acid transport protein 1 (p = 0.0234), and lipoprotein lipase (p = 0.0425) relative expression were increased in GA400, GA600, and GA800 in breast muscle. In this study, the optimum dosage of 600 mg/kg guanidinoacetic acid improved the liver and breast muscle fat deposition, lipid levels, and lipid metabolism-related gene expression in ducks.

2.
Animals (Basel) ; 14(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473074

ABSTRACT

The blood vessels of the placenta are crucial for fetal growth. Here, lower vessel density and ornithine (Orn) content were observed in placentae for low-birth-weight fetuses versus normal-birth-weight fetuses at day 75 of gestation. Furthermore, the Orn content in placentae decreased from day 75 to 110 of gestation. To investigate the role of Orn in placental angiogenesis, 48 gilts (Bama pig) were allocated into four groups. The gilts in the control group were fed a basal diet (CON group), while those in the experimental groups were fed a basal diet supplemented with 0.05% Orn (0.05% Orn group), 0.10% Orn (0.10% Orn group), and 0.15% Orn (0.15% Orn group), respectively. The results showed that 0.15% Orn and 0.10% Orn groups exhibited increased birth weight of piglets compared with the CON group. Moreover, the 0.15% Orn group was higher than the CON group in the blood vessel densities of placenta. Mechanistically, Orn facilitated placental angiogenesis by regulating vascular endothelial growth factor-A (VEGF-A). Furthermore, maternal supplementation with 0.15% Orn during gestation increased the jejunal and ileal villi height and the concentrations of colonic propionate and butyrate in suckling piglets. Collectively, these results showed that maternal supplementation with Orn promotes placental angiogenesis and improves intestinal development of suckling piglets.

3.
Animals (Basel) ; 14(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38473179

ABSTRACT

The primary factor leading to elevated rates of diarrhea and decreased performance in piglets is immunological stress. The regulation of immune stress through the intestinal flora is a crucial mechanism to consider. In total, 30 weaned piglets were randomly allocated to five groups: the basal diet group (Control), basal diet + lipopolysaccharides group (LPS), basal diet + 250 µg/kg 6-Formylindolo [3,2-b] carbazole + LPS group (FICZ), basal diet + 3mg/kg Cardamonin + LPS group (LCDN), and basal diet + 6mg/kg Cardamonin + LPS group (HCDN/CDN). The results showed that compared with those of the LPS group, the expression of tight junction proteins (occludin; claudin-1) in the FICZ group was significantly increased, and the mRNA levels of IL-1ß and TNF-α were significantly reduced (p < 0.05). HCDN treatment had a better effect on LPS-induced intestinal barrier damage in this group than it did in the LCDN group. HCDN treatment leads to a higher villus height (VH), a higher ratio of villi height to crypt depth (V/C), higher tight junction proteins (ZO-1; occludin), and higher short-chain fatty acids (SCFAs). In addition, correlation analyses showed that Succinivibrio was positively correlated with several SCFAs and negatively correlated with prostaglandin-related derivatives in the FICZ group and CDN group (p < 0.05). In summary, Cardamonin alleviates intestinal mucosal barrier damage and inflammatory responses by regulating the intestinal microbiota and its metabolism.

4.
Article in English | MEDLINE | ID: mdl-38420856

ABSTRACT

In this study, we performed a quantitative analysis of 12 compounds derived from Piper sarmentosum extract (PSE) and guava leaf extract (GE). In addition, we investigated the effects of mixed extract (ME) of PSE and GE (1:1) on piglets' gut microbiome and metabolome. A total of 200 piglets (Duroc × Landrace × Large Yorkshire, 21-day-old) were randomly assigned into two groups with five replicates of 20 piglets/pen having the same initial body weight. Piglets were fed a basal diet supplemented with ME at 0 (T0) or 200 mg/kg (T1) for 3 weeks. The quantitation results by ultraperformance liquid chromatography linked to triple-quadrupole tandem mass spectrometry showed that vitexin 2-O-rhamnoside and pellitorine were the greatest abundant among six compounds detected in the PSE. In addition, quercetin, isoquercitrin and avicularin were found to be the richest of all detected compounds in the GE. Findings on experimental animals indicated that three differential metabolites, comprising L-alanine, sarcosine and dihydrofolic acid, in T1 compared with T0 groups, have exactly opposite levels trends in serum and faeces. Moreover, two metabolic pathways (i.e., urea cycle and glutamate metabolism) differed significantly in the serum and faeces of piglets between T0 and T1 (p < 0.05). At the same time, T1 had significantly higher relative abundances of Agathobacter and Alloprevotella than T0 at genus level (p < 0.05). Correlation analysis revealed that the genus Agathobacter correlated positively with carbamoyl phosphate (p < 0.01) and oxoglutaric acid (p < 0.05), and negatively with succinic acid (p < 0.01) and ornithine (p < 0.05). These four differential metabolites were also involved in the urea cycle and/or glutamate metabolism pathways. The results here indicated that the tested plant extract mixture represents a worthy feed additive with obvious antioxidative properties.

5.
Animals (Basel) ; 14(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38254372

ABSTRACT

The experiment aimed to investigate the effects of dietary lycopene on the growth performance, antioxidant capacity, meat quality, intestine histomorphology, and cecal microbiota in broiler chickens. We randomly divided five hundred and seventy-six one-day-old male broilers into four groups each with six replicates and 24 chickens in each replicate. The control group (CG) was fed the basal diet, and the other groups were given powder lycopene of 10, 20, and 30 mg/kg lycopene (LP10, LP20, and LP30, respectively). Compared with the control group, (1) the dietary lycopene increased (p = 0.001) the average daily gain and decreased (p = 0.033) the feed conversion ratio in the experimental groups; (2) the glutathione peroxidase enzyme contents in LP20 were higher (p =< 0.001) in myocardium; (3) the crude protein contents were higher (p = 0.007) in the group treated with 30 mg/kg dietary lycopene; (4) the jejunum villous height was higher (p = 0.040) in LP20; (5) the Unclassified-f-Ruminococcaceae relative abundance was significantly higher (p = 0.043) in LP20. In this study, adding 20 mg/kg dietary lycopene to the broiler chickens' diets improved the growth performance, antioxidant capacity, meat quality, intestine histomorphology, and cecal microbiota in broiler chickens.

6.
Free Radic Biol Med ; 212: 433-447, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38159892

ABSTRACT

Blood vessels play a crucial role in the development of skeletal muscle, ensuring the supply of nutrients and oxygen. Putrescine, an essential polyamine for eukaryotic cells, has an unclear impact on skeletal muscle angiogenesis. In this study, we observed lower vessel density and reduced putrescine level in the muscle of low-birth-weight piglet models, and identified a positive correlation between putrescine content and muscle vessel density. Furthermore, putrescine was found to promote angiogenesis in skeletal muscle both in vitro and in vivo by targeting matrix metalloproteinase 9 (MMP9). On a mechanistic level, putrescine augmented the expression of methyltransferase like 3 (METTL3) by attenuating hydrogen peroxide production, thereby increasing the level of N6-methyladenosine (m6A)-modified MMP9 mRNA. This m6A-modified MMP9 mRNA was subsequently recognized and bound by the YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), enhancing the stability of MMP9 mRNA and its protein expression, consequently accelerating angiogenesis in skeletal muscle. In summary, our findings suggest that putrescine enhances MMP9-mediated angiogenesis in skeletal muscle via the hydrogen peroxide/METTL3 pathway.


Subject(s)
Methyltransferases , Putrescine , Animals , Swine , Methyltransferases/genetics , Methyltransferases/metabolism , Putrescine/pharmacology , Hydrogen Peroxide , Matrix Metalloproteinase 9/genetics , Angiogenesis , Muscle, Skeletal/metabolism , RNA, Messenger/genetics
7.
Toxins (Basel) ; 15(9)2023 08 31.
Article in English | MEDLINE | ID: mdl-37755961

ABSTRACT

Fusarium graminearum produces zearalenone (ZEA), a mycotoxin that is widely found in food and feed products and is toxic to humans and livestock. Piper sarmentosum extract (PSE) inhibits F. graminearum, and Oroxylin A appears to be a major antifungal compound in PSE. The aim of this study is to quantify the Oroxylin A content in PSE using UPLC-QTOF-MS/MS, and to investigate the antagonistic activity of Oroxylin A against F. graminearum and its inhibitory effect on ZEA production. The results indicate that Oroxylin A inhibits both fungal growth and ZEA production in a dose-dependent manner. Oroxylin A treatment downregulated the mRNA expression of zearalenone biosynthesis protein 1 (ZEB1) and zearalenone biosynthesis protein 2 (ZEB2). The metabolomics analysis of F. graminearum mycelia indicated that the level of ribose 5-phosphate (R5P) deceased (p < 0.05) after Oroxylin A treatment (64-128 ng/mL). Moreover, as the Oroxylin A treatment content increased from 64 to 128 ng/mL, the levels of cis-aconitate (p < 0.05) and fumarate (p < 0.01) were upregulated successively. A correlation analysis further showed that the decreased R5P level was positively correlated with ZEB1 and ZEB2 expression, while the increased cis-aconitate and fumarate levels were negatively correlated with ZEB1 and ZEB2 expression. These findings demonstrate the potential of Oroxylin A as a natural agent to control toxigenic fungi and their mycotoxin.


Subject(s)
Fusarium , Mycotoxins , Zearalenone , Humans , Zearalenone/analysis , Tandem Mass Spectrometry , Aconitic Acid/metabolism , Aconitic Acid/pharmacology , Mycotoxins/analysis , Fusarium/metabolism
8.
Microorganisms ; 11(9)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37764163

ABSTRACT

Cassava (Manihot esculenta Crantz) foliage is a byproduct of cassava production characterized by high biomass and nutrient content. In this study, we investigated the effects of cassava foliage on antioxidant capacity, growth performance, and immunity status in goats, as well as rumen fermentation and microbial metabolism. Twenty-five Hainan black goats were randomly divided into five groups (n = 5 per group) and accepted five treatments: 0% (T1), 25% (T2), 50% (T3), 75% (T4), and 100% (T5) of the cassava foliage silage replaced king grass, respectively. The feeding experiment lasted for 70 d (including 10 d adaptation period and 60 d treatment period). Feeding a diet containing 50% cassava foliage resulted in beneficial effects for goat growth and health, as reflected by the higher average daily feed intake (ADFI), average daily gain (ADG) and better feed conversion rate (FCR), as well as by the reduced serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine (CRE), and triglycerides (TG). Meanwhile, cassava foliage improved antioxidant activity by increasing the level of glutathion peroxidase (GSH-Px), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) and lowering malondialdehyde (MDA). Moreover, feeding cassava foliage was also beneficial to immunity status by enhancing complement 3 (C3), complement 4 (C4), immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM). Furthermore, the addition of dietary cassava foliage also altered rumen fermentation, rumen bacterial community composition, and metabolism. The abundance of Butyrivibrio_2 and Prevotella_1 was elevated, as were the concentrations of beneficial metabolites such as butyric acid; there was a concomitant decline in metabolites that hindered nutrient metabolism and harmed host health. In summary, goats fed a diet containing 50% cassava foliage silage demonstrated a greater abundance of Butyrivibrio_2, which enhanced the production of butyric acid; these changes led to greater antioxidant capacity, growth performance, and immunity in the goats.

9.
Animals (Basel) ; 13(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37443906

ABSTRACT

In the poultry industry, there is an urgent need to evaluate and introduce natural, effective, and safe alternatives for synthetic antibiotics, which have been banned in most countries. The present study aimed to investigate the effects of dietary supplementation with Piper sarmentosum extract (PSE) on the growth performance, intestinal barrier function, and metabolism of growing chickens. A total of 400 seven-day-old female chicks were randomly assigned to four dietary treatments, each of which consisted of five replicates and twenty birds each. The four experimental treatments were fed a basal diet containing 0, 100, 200, and 300 mg PSE/kg (BC, PSE1, PSE2, and PSE3 groups), respectively. The experiment lasted for 28 days. The results showed that dietary supplementation with PSE had no significant effects on the final body weight, average daily gain (ADG), average daily feed intake (ADFI), and the ratio of ADFI to ADG (F/G) (p > 0.05). Compared with the BC group, dietary supplementation with 200-300 mg/kg PSE increased the villus height in the jejunum and ileum of chickens (p < 0.05). The PSE-treated groups significantly increased the mRNA expression of Occludin, ZO-1, and Claudin-1 in the ileal mucosa of chickens (p < 0.05). In addition, a significant decrease in ileal TNF-α and IL-8 mRNA expression (p < 0.05) and a significant increase in IL-22 (p < 0.05) were observed in the PSE2 treatment compared to the BC group. Additionally, three gut metabolites (i.e., citrate, isocitrate, and spermine) showed significant differences among treatments (p < 0.05) and were involved in the tricarboxylic acid (TCA) cycle, the transfer of acetyl groups into mitochondria, and spermidine and spermine biosynthesis, respectively. In conclusion, the findings obtained here indicate that supplemental PSE can enhance the anti-inflammatory capacity and intestinal mucosal barrier function of chickens.

10.
Anim Nutr ; 14: 152-162, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37455790

ABSTRACT

This study was to determine the effects of dietary emodin (ED) on the intestinal mucosal barrier, nuclear factor kappa-B (NF-κB) pathways, and gut microbial flora in lipopolysaccharide (LPS)-induced piglets. Twenty-four weaned piglets were chosen and 4 treatments were created by randomly distributing piglets into CON, ED, LPS, and ED_LPS groups. Experiments were done in a 2 × 2 factorial arrangement and maintained for 21 d. Dietary treatment (a basal diet or 300 mg/kg ED) and immunological challenge (LPS or sterile saline) were 2 major factors. Intraperitoneal injections of LPS or sterilized saline were given to piglets on d 21. Six hours after the LPS challenge, all piglets were euthanized for sample collection and analysis. The results showed that piglets of the ED_LPS group had higher (P < 0.05) villus height to crypt depth ratio (VCR), and lower (P < 0.05) plasma D-lactate and diamine oxidase (DAO) than the LPS group. Furthermore, ED inhibited (P < 0.05) the decrease of glutathione peroxidase (GSH-Px) and catalase (CAT) activities and increase of malonaldehyde level (P < 0.05) in jejunal mucosa induced by LPS. The mRNA levels of pro-inflammatory cytokine genes (IL-6, IL-1ß, and TNF-α) were significantly reduced (P < 0.05), and the mRNA levels of antioxidant enzyme genes (GPX-1, SOD2 and CAT), as well as protein and mRNA levels of tight junction proteins (occludin, claudin-1, and ZO-1), were also significantly increased (P < 0.05) by ED addition in LPS-induced piglets. Meanwhile, ED supplementation significantly decreased the LPS-induced protein levels of cyclooxygenase-2 and phosphorylation levels of NF-κB p65 and IκBα in jejunal mucosa. Emodin had a significant effect on the composition of gut microbial flora at various taxonomic positions as indicated by 16S RNA sequencing. The acetic acid, isobutyric acid, valeric acid, and isovaleric acid concentrations in the cecum were also increased by ED addition in pigs (P < 0.05). Furthermore, the correlation analysis revealed that some intestinal microbiota had a potential relationship with jejunal VCR, plasma D-lactate and DAO, jejunal mucosa GSH-Px and CAT activity, and cecal short-chain fatty acid concentration. These data suggest that ED is effective in alleviating LPS-induced intestinal mucosal barrier injury by modulating gut microbiota in piglets.

11.
PLoS One ; 18(6): e0286335, 2023.
Article in English | MEDLINE | ID: mdl-37267289

ABSTRACT

During the early period of the Joseon Dynasty, the government undertook currency reform at both central and local levels to promote currency exchange and restructure market order. Drawing on historical sources and utilizing game theory methodologies, this study examines the challenges of state governance and the dynamics of central-local relations during this era. The findings suggest that the establishment of the Joseon Dynasty's governance system arose from the rulers' deliberate decisions; however, it was also driven by the necessity to reconcile the development of productive forces with the superstructure. The study highlights the impact of the "official" issue on communication efficiency between central and local authorities, which contributed to the currency reform's failure. Consequently, the central government's regulation and control over local regions, as well as its ability to govern the aspirations of grassroots populations, emerged as crucial factors for successful national governance. This research provides valuable insights into the academic value and significance of historical state governance practices and informs contemporary centrallocal relations and policy development.


Subject(s)
Game Theory , Government , Policy Making , Organizations
12.
Drug Discov Today ; 28(7): 103615, 2023 07.
Article in English | MEDLINE | ID: mdl-37172889

ABSTRACT

Although drugs targeting the orthosteric binding site of cannabinoid receptors (CBRs) have several therapeutic effects on human physiological and pathological conditions, they can also cause serious adverse effects. Only a few orthosteric ligands have successfully passed clinical trials. Recently, allosteric modulation has become a novel option for drug discovery, with fewer adverse effects and the potential to avoid drug overdose. In this review, we highlight novel findings related to the drug discovery of allosteric modulators (AMs) targeting CBRs. We summarize newly synthesized AMs and the reported/predicted allosteric binding sites. We also discuss the structural determinants of the AMs binding as well as the molecular mechanism of CBR allostery.


Subject(s)
Drug Discovery , Endocannabinoids , Humans , Allosteric Regulation , Allosteric Site , Binding Sites , Receptors, Cannabinoid , Ligands
13.
Molecules ; 28(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36770604

ABSTRACT

The transmission and infectivity of COVID-19 have caused a pandemic that has lasted for several years. This is due to the constantly changing variants and subvariants that have evolved rapidly from SARS-CoV-2. To discover drugs with therapeutic potential for COVID-19, we focused on the 3CL protease (3CLpro) of SARS-CoV-2, which has been proven to be an important target for COVID-19 infection. Computational prediction techniques are quick and accurate enough to facilitate the discovery of drugs against the 3CLpro of SARS-CoV-2. In this paper, we used both ligand-based virtual screening and structure-based virtual screening to screen the traditional Chinese medicine small molecules that have the potential to target the 3CLpro of SARS-CoV-2. MD simulations were used to confirm these results for future in vitro testing. MCCS was then used to calculate the normalized free energy of each ligand and the residue energy contribution. As a result, we found ZINC15676170, ZINC09033700, and ZINC12530139 to be the most promising antiviral therapies against the 3CLpro of SARS-CoV-2.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Molecular Dynamics Simulation , Peptide Hydrolases , Ligands , Medicine, Chinese Traditional , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/chemistry , Endopeptidases , Molecular Docking Simulation , Antiviral Agents/chemistry
14.
J Appl Microbiol ; 134(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36737421

ABSTRACT

AIMS: Fusarium graminearum is a toxic fungus that affects food and feed crops. Piper sarmentosum extract (PSE) is a potential source of anti-mildew natural products for the food and feed industry due to its various pharmacological properties. In this study, we evaluated the antifungal activity and untargeted metabolomics analysis of PSE against F. graminearum. METHODS AND RESULTS: Antifungal activity was evaluated using the mycelium growth rate method. Untargeted metabolomics analysis of PSE was performed using ultra high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results showed that PSE (1 and 2 mg ml-1) possesses inhibitory activity against F. graminearum, and a total of 17 compounds that including 8 alkaloids, 3 phenols, 3 lipids, and 3 organic acids might be the antifungal markers in PSE. Metabolomics analysis further revealed that PSE could significantly increase the levels of guanosine, guanine, adenosine, and L-isoleucine in fungi, which are related to purine and L-isoleucine metabolic pathways. CONCLUSIONS: PSE is a promising anti-mildew agent that inhibits the growth of F. graminearum in food and feed. PSE (1 and 2 mg ml-1) may exert antifungal properties by inhibiting fungal purine nucleotide synthesis and enhancing the level of L-isoleucine compared with the control groups.


Subject(s)
Fusarium , Piper , Antifungal Agents/pharmacology , Piper/chemistry , Chromatography, Liquid , Isoleucine/metabolism , Tandem Mass Spectrometry , Fungi
15.
Front Nutr ; 9: 1026599, 2022.
Article in English | MEDLINE | ID: mdl-36562042

ABSTRACT

The present study investigated the effects of blend microbial feed additive (BMFA) in diet on performance, meat quality, gut microbiota and metabolism of broilers. In this study 240 seventy-day-old female Wenchang broilers were randomly allocated into four groups with five replicates of 12 broilers each. Broilers in the control group was fed only basal diet (S0), and the other three groups were fed the same basal diet supplemented with 0.2% (S1), 0.4% (S2), or 0.6% (S3) of BMFA, respectively. The trial continued for 54 days. The results showed that broilers in S2 and S3 had lower average daily feed intake (ADFI) compared with S0 and S1 (P < 0.05). However, diet supplementation with BMFA had no significantly influence on the average daily gain (ADG) and the ratio of ADFI to ADG (F/G) (P > 0.05). The highest thigh muscle percentage was observed in S2 (P < 0.05) among all groups. Diet supplementation with BMFA reduced the shear force in both breast and thigh muscles (P < 0.05) of broilers. An increase (P < 0.05) in the total unsaturated fatty acid (USFA), monounsaturated fatty acids (MUFA), and ratio of unsaturated fatty acids to saturated fatty acid (USFA/SFA) in breast muscles was observed in S3 compared with S0. It was found that the S3 had a relatively higher abundance of Lactobacillus (P < 0.001), as well as a lower abundance of the Bacteroides, Rikenellaceae RC9 gut group, Olsenella, Prevotellaceae UCG-001 and Prevotella (P < 0.05) than the S0. Correlation analysis indicated that a total of 17 differential metabolites between the S3 and S0 were significantly correlated with the 7 differential genera microflora. Overall, diet supplementation with 0.6% of BMFA can significantly improve the meat quality of broilers by decreasing the concentration of SFA and enhancing the levels of the total USFA, MUFA and USFA/SFA in breast muscles. Those findings were tightly bound to the higher proportion of Lactobacillus genus in the intestinal tract of broilers influenced by BMFA.

16.
PLoS One ; 17(8): e0271718, 2022.
Article in English | MEDLINE | ID: mdl-36006904

ABSTRACT

Runs of homozygosity (ROH) are continuous homozygous segments from the common ancestor of parents. Evaluating ROH pattern can help to understand inbreeding level and genetic basis of important traits. In this study, three representative cattle populations including Leiqiong cattle (LQC), Lufeng cattle (LFC) and Hainan cattle (HNC) were genotyped using the Illumina BovineHD SNPs array (770K) to assess ROH pattern at genome wide level. Totally, we identified 26,537 ROH with an average of 153 ROH per individual. The sizes of ROH ranged from 0.5 to 53.26Mb, and the average length was 1.03Mb. The average of FROH ranged from 0.10 (LQC) to 0.15 (HNC). Moreover, we identified 34 ROH islands (with frequency > 0.5) across genome. Based on these regions, we observed several breed-specific candidate genes related to adaptive traits. Several common genes related to immunity (TMEM173, MZB1 and SIL1), and heat stress (DNAJC18) were identified in all three populations. Three genes related to immunity (UGP2), development (PURA) and reproduction (VPS54) were detected in both HNC and LQC. Notably, we identified several breed-specific genes related to sperm development (BRDT and SPAG6) and heat stress (TAF7) in HNC, and immunity (CDC23 and NME5) and development (WNT87) in LFC. Our findings provided valuable insights into understanding the genomic homozygosity pattern and promoting the conservation of genetic resources of Chinese indigenous cattle.


Subject(s)
Inbreeding , Semen , Animals , Cattle/genetics , Genome/genetics , Genomics , Homozygote , Male
17.
Animals (Basel) ; 12(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35804560

ABSTRACT

This study investigates the effects of vine tea (Ampelopsis grossedentata) extract (AGE) on meat quality, gut microbiota and cecal content metabolites of Wenchang broilers. A total of 240 female Wenchang broilers aged 70 days were randomly allocated into four groups with five replicates of twelve broilers each. Broilers were fed a corn-soybean basal diet supplemented with AGE at 0 (T1), 0.2% (T2), 0.4% (T3) and 0.6% (T4) until 124 days of age. The whole feeding trial lasted 54 days. Results suggest that the content of total triglycerides and low-density lipoprotein cholesterol in serum of broilers are linearly reduced with dietary AGE supplementation (p < 0.05). The T3 and T4 groups had higher (p < 0.05) a* value in thigh and breast muscles than the T1 group. Additionally, the dietary supplementation of AGE decreased the shear force and drip loss of both thigh and breast muscles linearly (p < 0.05). Compared with the T1 group, AGE supplementation increased the levels of inosine monophosphate (IMP) significantly (p < 0.05) in both the thigh and breast muscles. Furthermore, an increase (p < 0.05) in the total unsaturated fatty acid (USFA), polyunsaturated fatty acids (PUFA) and the ratio of unsaturated fatty acids to saturated fatty acid (USFA: SFA) in both the thigh and breast muscles in the T3 group was observed. Higher abundance of Bacteroidota (p < 0.05) and lower abundance of Firmicutes (p < 0.05) were observed in the T3 group. The abundance of Faecalibacterium was significantly decreased (p < 0.05) in the T3 group compared with the T1 group. Cholesterol sulfate and p-cresol sulfate were identified as differential metabolites between the T1 and T3 groups. It suggested that 0.4% of AGE supplementation significantly downregulated the levels of p-cresol sulfate and cholesterol sulfate (p < 0.05) and the hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) activity compared with the control. Our present study demonstrates that dietary supplementation with AGE can improve the quality and flavor by increasing the IMP and PUFA content in the muscle of Wenchang broilers. Furthermore, dietary AGE supplementation with 0.4% can regulate the cholesterol metabolism of Wenchang broilers.

18.
Ecotoxicol Environ Saf ; 233: 113324, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35193030

ABSTRACT

This work investigated the distribution and chemical fingerprints of 24 metals in particulate matter (PM) deposited in nonoccupational human lungs. Metals in the pulmonary PM can be grouped by the mean concentration as > 5 × 103 µg/g (Al/Fe/Ca/Mg/Zn), 1-5 × 103 µg/g (Ti/Ba/Pb/Mn), 0.2-1 × 103 µg/g (Cu/Cr/As/V) and < 100 µg/g (Ni/Sn/Cd/Sb). Three parameters (LFL, LR, EFP) were defined to predict different metal leaching behaviors. The leaching factor (LFL) of metals was 10-60 for Pb/Sb/Cd/Co/Cu and decreased to 1-2 for Ni/Cr/Mg/Al/Fe. Metals showed a divergent extent of lung retention (LR), including high retention (LR>10, Al/Cd/Cr/Ba/Ni/Ti/Sn/V/Sb), moderate retention (2 

Subject(s)
Metals, Heavy , Particulate Matter , Environmental Monitoring , Humans , Lung/chemistry , Metals/analysis , Metals, Heavy/analysis , Particulate Matter/analysis
19.
Appl Opt ; 61(6): C27-C36, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-35200995

ABSTRACT

This paper proposes a 3D reconstruction and positioning method based on a single detecting camera and geometric constraint to evaluate the defect quantitatively. We realize the camera orientation through datum point coordinates acquired by a photogrammetry system and then solve the equation of the defect detection camera model and surface constraints to reconstruct the color point cloud in 3D space. To realize the reconstruction and orientation of defects on objects without marker points, the system is operated by a repetitive moving of robotic arms. Finally, the experiment achieves the reconstruction of three types of products with marker points and one of the same types of objects without marks. The experiment shows that this method can limit the accuracy of surface feature positioning to 0.7 mm, and relative accuracy of the area calculation to 0.125%.

20.
Front Vet Sci ; 8: 656179, 2021.
Article in English | MEDLINE | ID: mdl-34109234

ABSTRACT

The effects of dietary supplementation with guava leaf extracts (GE) on intestinal barrier function and serum and fecal metabolome in weaned piglets challenged by enterotoxigenic Escherichia coli (ETEC) were investigated. In total, 50 weaned piglets (Duroc × Yorkshire × Landrace) from 25 pens (two piglets per pen) were randomly divided into five groups: BC (blank control), NC (negative control), S50 (supplemented with 50 mg kg-1 diet GE), S100 (100 mg kg-1 diet GE), and S200 (200 mg kg-1 diet GE), respectively. On day 4, all groups (except BC) were orally challenged with enterotoxigenic ETEC at a dose of 1.0 × 109 colony-forming units (CFUs). After treatment for 28 days, intestinal barrier function and parallel serum and fecal metabolomics analysis were carried out. Results suggested that dietary supplementation with GE (50-200 mg kg-1) increased protein expression of intestinal tight junction proteins (ZO-1, occludin, claudin-1) (p < 0.05) and Na+/H+ exchanger 3 (NHE3) (p < 0.05). Moreover, dietary supplementation with GE (50-200 mg kg-1) increased the level of tetrahydrofolic acid (THF) and reversed the higher level of nicotinamide-adenine dinucleotide phosphate (NADP) induced by ETEC in serum compared with the NC group (p < 0.05), and enhanced the antioxidant capacity of piglets. In addition, dietary addition with GE (100 mg kg-1) reversed the lower level of L-pipecolic acid induced by ETEC in feces compared with the NC group (p < 0.05) and decreased the oxidative stress of piglets. Collectively, dietary supplementation with GE exhibited a positive effect on improving intestinal barrier function. It can reprogram energy metabolism through similar or dissimilar metabolic pathways and finally enhance the antioxidant ability of piglets challenged by ETEC.

SELECTION OF CITATIONS
SEARCH DETAIL
...