Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Biofilms Microbiomes ; 10(1): 59, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034349

ABSTRACT

The dominant bacteria in the hindgut of calves play an important role in their growth and health, which could even lead to lifelong consequences. However, the identification of core probiotics in the hindgut and its mechanism regulating host growth remain unclear. Here, a total of 1045 fecal samples were analyzed by 16S rRNA gene sequencing from the 408 Holstein dairy calves at the age of 0, 14, 28, 42, 56, and 70 days to characterize the dynamic changes of core taxa. Moreover, the mechanisms of nutrient metabolism of calf growth regulated by core bacteria were investigated using multi-omics analyses. Finally, fecal microbiota transplantation (FMT) in mice were conducted to illustrate the potential beneficial effects of core bacteria. Four calf enterotypes were identified and enterotypes dominated by Bifidobacterium and Oscillospiraceae_UCG-005 were representative. The frequency of enterotype conversion shifted from variable to stable. The close relationship observed between phenotype and enterotype, revealing a potential pro-growth effect of Bifidobacterium, might be implemented by promoting the use of carbohydrate, activating the synthesis of volatile fatty acids, amino acids and vitamin B6, and inhibiting methane production in the hindgut. The FMT results indicated the beneficial effect of Bifidobacterium on host growth and hindgut development. These results support the notion that the Bifidobacterium-dominated fecal microbiome would be an important driving force for promoting the host growth in the early life. Our findings provide new insights into the potential probiotic mining and application strategies to promote the growth of young animals or improve their growth retardation.


Subject(s)
Bifidobacterium , Fecal Microbiota Transplantation , Feces , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Animals , Feces/microbiology , Cattle , RNA, Ribosomal, 16S/genetics , Bifidobacterium/genetics , Bifidobacterium/growth & development , Mice , Fecal Microbiota Transplantation/methods , Phenotype , Probiotics/administration & dosage , Phylogeny , DNA, Bacterial/genetics
2.
Antioxidants (Basel) ; 13(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38929089

ABSTRACT

Oxidative stress damage in periparturient cows decreases both production and their health; supplementation with complex additives during the periparturient period has been used as an important strategy to enhance the antioxidant status and production of dairy cows. The periparturient cows not only risk a negative energy balance due to reduced dry matter intake but also represent a sensitive period for oxidative stress. Therefore, we have developed an immunomodulatory and nutritional regulation combined additive (INC) that hopefully can improve the immune status and production of cows during the periparturient period and their offspring health and growth by improving their antioxidant stress status. The INC comprised a diverse array of additives, including water-soluble and fat-soluble vitamins, Selenomethionine, and active dry Saccharomyces cerevisiae. Forty-five multiparous Holstein cows were randomly assigned to three treatments: CON (no INC supplementation, n = 15), INC30 (30 g/d INC supplementation, n = 15), and INC60 (60 g/d INC supplementation, n = 15) based on last lactation milk yield, body condition score, and parity. Newborn calves were administered 4 L of maternal colostrum originating from the corresponding treatment and categorized based on the treatment received by their respective dams. The INC not only served to maintain the antioxidative stress system of dairy cows during the periparturient period but also showed a tendency to improve the immune response (lower tumor necrosis factor and interleukin-6) during the perinatal period. A linear decrease in concentrations of alkaline phosphatase postpartum and ß-hydroxybutyrate was observed with INC supplementation. Milk fat yield, milk protein yield, and energy-corrected milk yield were also increased linearly with increasing additive supplementation. Calves in the INC30 group exhibited greater wither height and chest girth but no significant effect on average daily gain or body weight. The diarrhea frequency was linearly decreased with the incremental level of INC. Results indicate that supplementation with INC in peripartum dairy cows could be a major strategy to improve immune response, decrease inflammation, maintain antioxidant stress status in transition dairy cows, and have merit in their calves. In conclusion, this study underlines the benefits of INC supplementation during the transition period, as it improved anti-inflammatory capacity, could positively impact antioxidative stress capacity, and eventually enhanced the production performance of dairy cows and the health and growth of calves.

3.
Virology ; 529: 234-245, 2019 03.
Article in English | MEDLINE | ID: mdl-30738361

ABSTRACT

Ticks are medically-important arthropods that maintain and transmit numerous emerging viruses. China suffers severely from tick-borne viral diseases such as tick-borne encephalitis and severe fever with thrombocytopenia syndrome (SFTS), but the background of tick-borne viruses is very limited. Here we report the virome profiling of ticks and goat sera from SFTS-epidemic areas, and serological investigation of SFTS virus (SFTSV) and Nairobi sheep disease virus (NSDV). Results revealed divergent viruses in ticks and goat sera, including SFTSV and NSDV. Sequence and phylogenetic analyses showed that the SFTSV identified here was most closely related to human SFTSV in sampling and surrounding areas, and the NSDV to the previously identified NSDV from northeast China. Serological investigation of SFTSV infection in goats revealed intensive activity in those areas. Surprisingly, two different methods of NSDV serological investigation showed no sera positive for this virus.


Subject(s)
Genome, Viral , Goat Diseases/virology , Ixodidae/virology , Nairobi sheep disease virus/isolation & purification , Phlebovirus/isolation & purification , Animals , China/epidemiology , Goat Diseases/epidemiology , Goats , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL