Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nature ; 629(8012): 597-602, 2024 May.
Article in English | MEDLINE | ID: mdl-38658762

ABSTRACT

Hydroformylation is an industrial process for the production of aldehydes from alkenes1,2. Regioselective hydroformylation of propene to high-value n-butanal is particularly important, owing to a wide range of bulk applications of n-butanal in the manufacture of various necessities in human daily life3. Supported rhodium (Rh) hydroformylation catalysts, which often excel in catalyst recyclability, ease of separation and adaptability for continuous-flow processes, have been greatly exploited4. Nonetheless, they usually consist of rotationally flexible and sterically unconstrained Rh hydride dicarbonyl centres, only affording limited regioselectivity to n-butanal5-8. Here we show that proper encapsulation of Rh species comprising Rh(I)-gem-dicarbonyl centres within a MEL zeolite framework allows the breaking of the above model. The optimized catalyst exhibits more than 99% regioselectivity to n-butanal and more than 99% selectivity to aldehydes at a product formation turnover frequency (TOF) of 6,500 h-1, surpassing the performance of all heterogeneous and most homogeneous catalysts developed so far. Our comprehensive studies show that the zeolite framework can act as a scaffold to steer the reaction pathway of the intermediates confined in the space between the zeolite framework and Rh centres towards the exclusive formation of n-butanal.

2.
JACS Au ; 4(2): 666-679, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38425920

ABSTRACT

Reactant-induced structural evolutions of heterogeneous metal catalysts are frequently observed in numerous catalytic systems, which can be associated with the formation or deactivation of active sites. In this work, we will show the structural transformation of subnanometer Pt clusters in pure-silica MFI zeolite structure in the presence of CO, O2, and/or H2O and the catalytic consequences of the Pt-zeolite materials derived from various treatment conditions. By applying the appropriate pretreatment under a reactant atmosphere, we can precisely modulate the size distribution of Pt species spanning from single Pt atoms to small Pt nanoparticles (1-5 nm) in the zeolite matrix, resulting in the desirably active and stable Pt species for CO oxidation. We also show the incorporation of Fe into the zeolite framework greatly promotes the stability of Pt species against undesired sintering under harsh conditions (up to 650 °C in the presence of CO, O2, and moisture).

3.
Proc Natl Acad Sci U S A ; 121(6): e2312959121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38300865

ABSTRACT

The incorporation of multiple metal ions in metal-organic frameworks (MOFs) through one-pot synthesis can induce unique properties originating from specific atomic-scale spatial apportionment, but the extraction of this crucial information poses challenges. Herein, nondestructive solid-state NMR spectroscopy was used to discern the atomic-scale metal apportionment in a series of bulk Mg1-xCox-MOF-74 samples via identification and quantification of eight distinct arrangements of Mg/Co ions labeled with a 13C-carboxylate, relative to Co content. Due to the structural characteristics of metal-oxygen chains, the number of metal permutations is infinite for Mg1-xCox-MOF-74, making the resolution of atomic-scale metal apportionment particularly challenging. The results were then employed in density functional theory calculations to unravel the molecular mechanism underlying the macroscopic adsorption properties of several industrially significant gases. It is found that the incorporation of weak adsorption sites (Mg2+ for CO and Co2+ for CO2 adsorption) into the MOF structure counterintuitively boosts the gas adsorption energy on strong sites (Co2+ for CO and Mg2+ for CO2 adsorption). Such effect is significant even for Co2+ remote from Mg2+ in the metal-oxygen chain, resulting in a greater enhancement of CO adsorption across a broad composition range, while the enhancement of CO2 adsorption is restricted to Mg2+ with adjacent Co2+. Dynamic breakthrough measurements unambiguously verified the trend in gas adsorption as a function of metal composition. This research thus illuminates the interplay between atomic-scale structures and macroscopic gas adsorption properties in mixed-metal MOFs and derived materials, paving the way for developing superior functional materials.

4.
JACS Au ; 3(11): 3213-3226, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38034962

ABSTRACT

Zeolite-encapsulated subnanometer metal catalysts are an emerging class of solid catalysts with superior performances in comparison to metal catalysts supported on open-structure solid carriers. Currently, there is no general synthesis methodology for the encapsulation of subnanometer metal catalysts in different zeolite structures. In this work, we will show a general synthesis method for the encapsulation of subnanometer metal clusters (Pt, Pd, and Rh) within various silicoaluminate zeolites with different topologies (MFI, CHA, TON, MOR). The successful generation of subnanometer metal species in silicoaluminate zeolites relies on the introduction of Sn, which can suppress the migration of subnanometer metal species during high-temperature oxidation-reduction treatments according to advanced electron microscopy and spectroscopy characterizations. The advantage of encapsulated subnanometer Pt catalysts in silicoaluminate zeolites is reflected in the direct coupling of ethane and benzene for production of ethylbenzene, in which the Pt and the acid sites work in a synergistic way.

5.
J Colloid Interface Sci ; 638: 901-907, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36737350

ABSTRACT

Pt-based alloys with precise structure and composition design have been considered to be effective and robust novel electrocatalysts for fuel cells. Whereas, the sluggish kinetics of oxygen reduction reaction (ORR) and low intrinsic activity of Pt limited their real application on a large scale. Herein, a novel ternary PtZrNi nanorods (PtZrNi NRs) was synthesized via a facile wet-chemical method to achieve high electrocatalytic performance for both ORR and alcohol oxidation reaction owing to the synergism of chosen three elements and prominent one-dimensional morphology. Specifically, the PtZrNi NRs show enhanced mass and specific activities of 0.755 A mgPt-1 and of 0.97 mA/cm2 at 0.9 VRHE towards ORR in acidic media, which are 4.7 and 4.4 times of those of commercial Pt/C, respectively. Additionally, in alkaline media, the PtZrNi NRs also exhibit superior ORR mass and specific activities of 3.216 A mgPt-1and 4.13 mA/cm2, enhanced by 34.6 and 31.3 times compared with those of commercial Pt/C, respectively. The PtZrNi NRs retain the nanorod shape well without agglomeration after an accelerated durability test (20000 cycles). This work may offer a new perspective for engineering high-performance Pt-based electrocatalysts for commercial fuel cells.


Subject(s)
Alloys , Nanotubes , Kinetics , Oxygen
6.
RSC Adv ; 12(14): 8317-8322, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35424832

ABSTRACT

As a widely used artificially synthesized sweetener, saccharin faced numerous disputes associated with food safety. Therefore, its fast analysis in food is of crucial importance. In this study, an analytical method for the fast and reliable screening of saccharin in various beverages was established and validated, by combining HPTLC with densitometry and surface enhanced Raman spectroscopy. The diluted sample liquid was directly sprayed and separated on a silica gel plate using a mixture of ethyl acetate and acetic acid in the ratio of 9 : 1 (v/v) as the mobile phase. The separation realized full isolation of the analyte from background noises. Then, a densitometry analysis in the absorption-reflection mode (working wavelength 230 nm) was optimized to obtain quantitative data, showing a good linearity in the range of 40-200 ng per band (R 2 = 0.9988). The limits of detection and quantification were determined to be 6 and 20 ng per band, respectively, which were equal to 6 and 20 mg kg-1. The quantitative results also displayed satisfactory accuracy and precision, with a spike-recovery rate within 87.75-98.14% (RSD <5.13%). As a cost-efficient tool for confirmation, surface enhanced Raman spectroscopy was employed to profile the molecular fingerprint of the analyte eluted from the plate layer. Under optimized conditions (785 nm laser as the excitation light and silver nanoparticle loaded glass fiber paper as the active substrate), the elution of the saccharin band exhibited stable and sensitive surface enhanced Raman spectroscopy signals. This study demonstrated that HPTLC could be a versatile platform for food analysis, with outstanding simplicity and cost-efficiency.

7.
Opt Express ; 27(14): 19177-19187, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31503681

ABSTRACT

We investigate experimentally spatiotemporal characteristics of fluorescence emission from fs-laser-induced filaments in air. Emissions accompanying the transitions of N2 (C3Πu-B3Πg) and N 2+ (B2Σu+-X2Σg+) are dominant. The decay dynamics of fluorescence from different radial positions and longitudinal sections of a filament column are obtained along with high resolution spectra. A decay curve contains two exponential components: a fast one (with a decay time constant ∼10s ps), and a slow one (∼sub-ns). The lifetime of the N 2 fluorescence is about three orders shorter than its spontaneous emission lifetime, indicating that most of the N 2 molecules in the excited state (C3Πu) are de-excited through collision. Different de-excitation mechanisms of N 2 (C3Πu) molecules contributing to fluorescence decay constants, e.g., the e --N2, N 2-N2, and O 2-N2 collisions, are elucidated. We analyze the variations of decay constants together with corresponding fluorescence intensities, and obtain temperature distributions by fitting band spectra of N 2 molecules and N 2+ ions with a synthetic spectral model. Our results suggest that the fast and slow decay processes originate from the e --N2 and O 2-N2 collisions, respectively.

8.
Opt Express ; 26(10): 13425-13435, 2018 May 14.
Article in English | MEDLINE | ID: mdl-29801368

ABSTRACT

We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plume splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.

9.
Anal Chem ; 89(14): 7750-7757, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28640577

ABSTRACT

Recently, laser ablated molecular isotopic spectrometry (LAMIS) has expanded its capability to explore molecules formation mechanism in laser-induced plasma in addition to isotope analysis. LAMIS is a powerful tool for tracking the origination of atoms that is involved in formation of investigated molecules by labeling atoms with their isotopic substitution. The evolutionary formation pathways of organic molecules, especially of C2 dimers and CN radicals, were frequently reported. However, very little is known about the formation pathways for metallic radicals and heterodimers in laser ablated plasma. This research focuses on elucidating the formation pathways of AlO radicals in femtosecond laser ablated plasma from 18O-labeled Al2O3 pellet. Plasmas expanding with strong forward bias in the direction normal to the sample surface were generated in the wake of a weakly ionized channel created by a femtosecond laser. The formation mechanism of AlO and influence of air were investigated with multiple plasma diagnostic methods such as monochromatic fast gating imaging, spatiotemporal resolved optical emission spectroscopy, and LAMIS. An advanced LAMIS fitting procedure was used to deduce the spatiotemporal distributions of Al18O and Al16O number densities and also their ratios. We found that the Al16O/Al18O number density ratio is higher for plasma portion closer to the sample surface, which suggests that chemical reactions between the plasma plume and ambient air are more intense at the tail of the plasma. The results also reveals that direct association of free Al and O atoms is the main mechanism for the formation of AlO at the early stage of the plasma. To the contrast, chemical reactions between plasma materials and ambient oxygen molecules and the isotope exchange effect are the dominant mechanisms of the formation of AlO and evolution of Al16O/Al18O number density ratio at the late stage of the plasma.

10.
Anal Chem ; 87(9): 4788-96, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25821993

ABSTRACT

Laser ablation molecular isotopic spectrometry (LAMIS) for rapid isotopic analysis of zirconium at atmospheric pressure was studied with a femtosecond-laser system operated under high repetition rate (1 kHz) and low pulse energy (160 µJ). The temporal evolution of zirconium neutral-atomic and ionic lines, as well as zirconium oxide molecular bands, were studied. Six molecular bands, belonging to the d(3)Δ-a(3)Δ (i.e., the α system) and E(1)Σ(+)-X(1)Σ(+) transitions, were observed with appreciable isotopic shifts. The assignments of the isotopic bandheads were first based on theoretical predictions of the band origins and the associated isotopic shifts of various dipole-allowed ZrO electronic transitions, followed by an experimental confirmation with a (94)Zr-enriched ZrO2 sample. In this work, the α(0,1) band from the d(3)Δ3-a(3)Δ3 subsystem was utilized for Zr isotope analysis based on a compromise between the magnitude of isotopic shifts in emission wavelengths, emission strengths, signal-to-background ratios, and spectral interferences. The analysis was performed in a standardless calibration approach; the isotopic information was extracted from the experimentally measured molecular spectra through theoretical spectral fitting. The results demonstrate the feasibility to obtain isotopic information for a spectrally complicated element like zirconium, without the need to use isotopically labeled calibration standards. The availability of comprehensive molecular constants will further improve the analytical accuracy of this standardless calibration approach.

11.
Appl Spectrosc ; 68(9): 1039-45, 2014.
Article in English | MEDLINE | ID: mdl-25226258

ABSTRACT

The detection of manganese (Mn) in industrial wastewater and seawater plays an important role in pollution monitoring and the investigation of geochemical and biological processes in the ocean. An approach has been introduced in this work to improve the detection sensitivity of Mn in liquids by laser-induced breakdown spectroscopy with a filter paper as solid substrate. The calibration curves of Mn in aqueous solutions were obtained with the detection of a Czerny-Turner spectrometer and an echelle spectrometer, respectively. The results showed that the Czerny-Turner spectrometer equipped with an intensified charge-coupled device (ICCD) had a more sensitive detection of Mn in aqueous solution with this approach. The limit of detection (LOD) for Mn was down to 0.11 mg/L with laser pulse energy of 90 mJ. With the same approach, the compact echelle spectrometer equipped with an ICCD was used to verify the feasibility for rapid onsite detection. The calibration curves for Mn in simulated industrial wastewater and seawater were constructed to calculate relevant LODs. The LODs of Mn were 2.78 mg/L in mixed solutions and 2.73 mg/L in seawater by calculation. Both the calibration curves and LODs were affected slightly by the matrix effect in the experiment. In order to assess the accuracy, a mixed solution including Mn, Cr, Cd, and Cu with known concentrations was determined, and good agreement between the measured and real values were achieved. It demonstrated that this approach has significant potential for rapid onsite detection of Mn and other metal elements in industrial wastewater and seawater.

12.
Appl Spectrosc ; 68(9): 1085-92, 2014.
Article in English | MEDLINE | ID: mdl-25226263

ABSTRACT

A new laser induced plasma temperature measuring method with two lines emitted from different elements with the same ionization degree is proposed, assuming local thermodynamic equilibrium condition of the plasma. The influence of measurement error on deduced temperature accuracy was simulated in theory. A solution containing Cu, K, and Cr elements was used as the sample. Plasma was generated at the surface of the solution, and time-resolved spectra were recorded. Two atomic lines, Cu I 324 nm and K I 766 nm, were used to determine the plasma temperature with the proposed method. Four atomic lines and two ionic lines of Cr were selected to deduce plasma temperature with the Saha-Boltzmann plot method for comparison. The temperatures deduced from the two different methods showed similar behavior as a function of time. The results suggested that this method can be useful in cases where only very few lines from a single element are available in the spectrum and Boltzmann or Saha-Boltzmann plots cannot be built.

13.
Phys Chem Chem Phys ; 16(34): 18294-300, 2014 Sep 14.
Article in English | MEDLINE | ID: mdl-25057850

ABSTRACT

Dense LLZO (Al-substituted Li7La3Zr2O12) pellets were processed in controlled atmospheres to investigate the relationships between the surface chemistry and interfacial behavior in lithium cells. Laser induced breakdown spectroscopy (LIBS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, synchrotron X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption spectroscopy (XAS) studies revealed that Li2CO3 was formed on the surface when LLZO pellets were exposed to air. The distribution and thickness of the Li2CO3 layer were estimated by a combination of bulk and surface sensitive techniques with various probing depths. First-principles thermodynamic calculations confirmed that LLZO has an energetic preference to form Li2CO3 in air. Exposure to air and the subsequent formation of Li2CO3 at the LLZO surface is the source of the high interfacial impedances observed in cells with lithium electrodes. Surface polishing can effectively remove Li2CO3 and dramatically improve the interfacial properties. Polished samples in lithium cells had an area specific resistance (ASR) of only 109 Ω cm(2) for the LLZO/Li interface, the lowest reported value for Al-substituted LLZO. Galvanostatic cycling results obtained from lithium symmetrical cells also suggest that the quality of the LLZO/lithium interface has a significant impact on the device lifetime.

14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(9): 2442-6, 2012 Sep.
Article in Chinese | MEDLINE | ID: mdl-23240414

ABSTRACT

While under laboratory conditions, the concentration of methane dissolved in water is too low to be detected because of the low solubility of methane using Raman spectroscopy. In the present paper, a novel approach based on CCl4 extraction was introduced, and used in the measurement of methane dissolved in water using Raman spectroscopy under laboratory conditions. Saturated aqueous solution of CH4, CCl4 solution after extraction of CH4 from the saturated aqueous solution and the saturated CCl4 solution of CH4 were prepared, and the Raman spectra of three samples were obtained. The obtained results show that the CH4 dissolved in saturated aqueous solution(the concentration of CH4 is about 1.14 mmol x L(-1)) can't been detected using Raman spectroscopy under laboratory conditions, but the CH4 Raman peak can be clearly seen in the spectra obtained for CCl4 solution after extraction. All the results demonstrate that the proposed approach can improve the Raman spectroscopy sensitivity of methane detection dissolved in water, and this approach has significant potential to be developed as an effective method for detection of methane dissolved in water.

15.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(8): 2027-31, 2012 Aug.
Article in Chinese | MEDLINE | ID: mdl-23156746

ABSTRACT

Cutting identification is one of the most important links in the course of cutting logging which is very significant in the process of oil drilling. In the present paper, LIBS was used for identification of four kinds of cutting samples coming from logging field, and then multivariate analysis was used in data processing. The whole spectra model and the feature model were built for cuttings identification using PLS-DA method. The accuracy of the whole spectra model was 88.3%, a little more than the feature model with an accuracy of 86.7%. While in the aspect of data size, the variables were decreased from 24,041 to 27 by feature extraction, which increased the efficiency of data processing observably. The obtained results demonstrate that LIBS combined with chemometrics method could be developed as a rapid and valid approach to cutting identification and has great potential to be used in logging field.

16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(3): 595-9, 2011 Mar.
Article in Chinese | MEDLINE | ID: mdl-21595198

ABSTRACT

Laser induced breakdown spectroscopy (LIBS) has been shown to be a promising technique for element analysis. However, self-absorption effect deeply influences the LIBS measurements. In the present paper, a Q-switched Nd:YAG laser operated at 1 064 nm was used to generate nickel plasmas in air. Four atomic lines Ni I 341.476/351.034/351.505/352.454 nm which belong to the same electronic configuration (3d9 (2D)4p-3d9 (2D)4s) of Ni were chosen for self-absorption investigation. Self-absorption of Ni I 351. 034 nm corresponding to the highest energy level 3D1 of 3d(9) (2D)4s was not observed in the plasma emission investigated. While for the other three lines, a strong self-absorption appeared at the prophase of the plasma and tended to weaken. The self-absorption at Ni I 352.454 nm was the most serious and still visible at the delay of 1100 ns, compared with the lines of Ni I 341.476/351.505 nm whose self-absorption duration is 900 and 500 ns respectively. It was also found that the self-absorption effect had power dependence and decreased with the increase in laser pulse energy. The obtained results suggest that the self-absorption effect could be alleviated by suitable atomic line selection, operating at a higher pulse energy and detecting with a longer delay. The possible reasons for the self-absorption duration difference for different lines were also discussed.

17.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(11): 3121-5, 2009 Nov.
Article in Chinese | MEDLINE | ID: mdl-20101999

ABSTRACT

Laser induced breakdown spectroscopy (LIBS) has been shown to be a promising technique for element analysis with many advantages including on-line, real time, standing off and multi-element detection capability. In the present paper, the LIBS experiments for Pb in slurry samples were carried out with the motivation of developing an in-situ sensor for monitoring heavy metal. A Q-switched Nd : YAG laser operating at 532 nm with repetition frequency of 10 Hz was utilized to generate plasma on the prepared slurry samples, which were doped with same weight manganese as reference and varied concentration of lead. The induced plasma emission was recorded by CCD. The LIBS signals at PbI 405.78 nm and MnI 403.07 nm from the slurry samples were investigated. It was found that the intensity ratio of I(Pb)/ I(Mn) increased as a linear function of the concentration of Pb with correlation coefficient R2 of 0.994 9. The obtained results show that LIBS with conjunction of referent element could be developed as a potential technique for contamination analysis of soil slurries. The main influence factors in LIBS signal detection were also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...