Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Spine J ; 21(1): 160-177, 2021 01.
Article in English | MEDLINE | ID: mdl-32800896

ABSTRACT

BACKGROUND: Low-tension traction is more effective than high-tension traction in restoring the height and rehydration of a degenerated disc and to some extent the bony endplate. This might better reshape the microenvironment for disc regeneration and repair. However, the repair of the combination of endplate sclerosis, osteophyte formation, and even collapse leading to partial or nearly complete occlusion of the nutrient channel is greatly limited. PURPOSE: To evaluate the effectiveness of low-intensity extracorporeal shock wave therapy (ESWT) combined with low tension traction for regeneration and repair of moderately and severely degenerated discs; to explore the possible mechanism of action. STUDY DESIGN: Animal study of a rat model of degenerated discs. METHODS: A total of thirty-five 6-month old male Sprague-Dawley rats were randomly assigned to one of five groups (n=7, each group). In Group A (model group), caudal vertebrae were immobilized using a custom-made external device to fix four caudal vertebrae (Co7-Co10) whereas Co8-Co9 underwent 4 weeks of compression to induce moderate disc degeneration. In Group B (experimental control group), as in Group A, disc degeneration was successfully induced after which the fixed device was removed for 8 weeks of self-recovery. The remaining three groups of rats represented the intervention Groups (C-E): after successful generation of disc degeneration in Group C (com - 4w/tra - 4w) and Group D (com - 4w/ESWT), as described for group A, low-tension traction (in-situ traction) or low-energy ESWT was administered for 4 weeks (ESWT parameters: intensity: 0.15 Mpa; frequency: 1 Hz; impact: 1,000 each time; once/week, 4 times in total); Group E (com - 4w/tra - 4w/ESWT): disc degeneration as described for group A, low-tension traction combined with low-energy ESWT was conducted (ESWT parameters as Group D). After experimentation, caudal vertebrae were harvested and disc height, T2 signal intensity, disc morphology, total glycosaminoglycan (GAG) content, gene expression, structure of the Co8-Co9 bony endplates and elastic moduli of the discs were measured. RESULTS: After continuous low-tension traction, low energy ESWT intervention or combined intervention, the degenerated discs effectively recovered their height and became rehydrated. However, the response in Group D was weaker than in the other intervention groups in terms of restoration of intervertebral disc (IVD) height, whereas Group E was superior in disc rehydration. Tissue regeneration was evident in Groups C to E using different interventions. No apparent tissue regeneration was observed in the experimental control group (Group B). The histological scores of the three intervention groups (Groups C-E) were lower than those of Groups A or B (p<.0001), and the scores of Groups C and E were significantly lower than those of Group D (p<.05), but not Group C versus Group E (p>.05). Compared with the intervention groups (Groups C-E), total GAG content of the nucleus pulposus (NP) in Group B did not increase significantly (p>.05). There was also no significant difference in the total GAG content between Groups A and B (p>.05). Of the three intervention groups, the recovery of NP GAG content was greatest in Group E. The expression of collagen I and II, and aggrecan in the annulus fibrosus (AF) was up-regulated (p<.05), whereas the expression of MMP-3, MMP-13, and ADAMTS-4 was down-regulated (p<.05). Of the groups, Group E displayed the greatest degree of regulation. The trend in regulation of gene expression in the NP was essentially consistent with that of the AF, of which Group E was the greatest. In the intervention groups (Groups C-E), compared with Group A, the pore structure of the bony endplate displayed clear changes. The number of pores in the endplate in Groups C to E was significantly higher than in Group A (p<.0001), among which Group C versus Group D (p=.9724), and Group C versus Group E (p=.0116). There was no significant difference between Groups A and B (p=.5261). In addition, the pore diameter also increased, the trend essentially the same as that of pore density. There was no significant difference between the three intervention groups (p=.7213). It is worth noting that, compared with Groups A and B, peripheral pore density and size in Groups D and E of the three intervention groups recovered significantly. The elastic modulus and diameter of collagen fibers in the AF and NP varied with the type of intervention. Low tension traction combined with ESWT resulted in the greatest impact on the diameter and modulus of collagen fibers. CONCLUSIONS: Low energy ESWT combined with low tension traction provided a more stable intervertebral environment for the regeneration and repair of moderate and severe degenerative discs. Low energy ESWT promoted the regeneration of disc matrix by reducing MMP-3, MMP-13, and ADAMTS-4 resulting in inhibition of collagen degradation. Although axial traction promoted the recovery of height and rehydration of the IVD, combined with low energy ESWT, the micro-nano structure of the bony endplate underwent positive reconstruction, tension in the annulus of the AF and nuclear stress of the NP declined, and the biomechanical microenvironment required for IVD regeneration and repair was reshaped.


Subject(s)
Extracorporeal Shockwave Therapy , Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Disease Models, Animal , Intervertebral Disc Degeneration/therapy , Male , Rats , Rats, Sprague-Dawley , Traction
2.
Spine J ; 20(9): 1503-1516, 2020 09.
Article in English | MEDLINE | ID: mdl-32305426

ABSTRACT

BACKGROUND: By blocking the cascade of reactions leading to intervertebral disc degeneration through immobilization-traction, a delay in intervertebral disc degeneration and its regeneration, to some extent, has been observed. However, the precise balance of regulation of the microenvironment of intervertebral disc biomechanics and coordination of the complex spatiotemporal reconstruction of the extracellular matrix have not yet been solved, and clinical results are far from successful. PURPOSE: In the present study, a mechanical degeneration model was constructed to evaluate the possibility and effectiveness of disc regeneration or repair through low-tension traction of degenerated discs so as to provide basic biomechanical information for clinical optimization of the traction device and to establish traction parameters for prevention and treatment of disc degeneration. STUDY DESIGN: A macro-, micro-, and nano-level structural analysis of degenerative discs of rat tail before and after controlled traction. METHODS: Six-month-old male Sprague-Dawley rats were randomly divided into seven groups: Group A: control group (instrumented with Kirschner [K]-wires only); Group B: Model group (caudal vertebrae immobilized using a custom-made external device to fix four caudal vertebrae [Co7-Co10], while Co8-Co9 vertebrae underwent 4 weeks of compression to induce disc degeneration); Group C: experimental control group (devices removed after the 4 week compression described in Group B, and recovered by themselves for 4 weeks). The remaining four groups represented intervention groups (Groups D and F: Co8-Co9 vertebrae compressed for 4 weeks followed by 2 or 4 weeks of in situ traction, respectively; Groups E and G: vertebrae compressed for 4 weeks followed by 2 or 4 weeks of excessive traction, respectively). X-ray and magnetic resonance imaging were performed at each time point to measure disc height and T2 signal intensity. At the end of the experiment, the animals were euthanized and tail vertebrae harvested for analysis of intervertebral disc histopathology, proteoglycan content, elastic modulus of fibers of the annulus fibrosus (AF) and nucleus pulposus (NP), and microstructure of the bony end plate. RESULTS: After 2 to 4 weeks of continuous traction (in situ and excessive traction), the Co8-Co9 intervertebral disc space of rats in Groups D to G increased significantly compared with Groups B and C (p < .05). In addition, signs of tissue regeneration were apparent in all four intervention groups (D-G). In addition, histologic scores of the intervention groups (D-G) were significantly lower than those in the model and experimental control groups (Groups B and C, respectively), although no significant difference was found between those four groups. Compared with the model group (Group B), total proteoglycan content of the NP in the intervention groups (D-G) increased significantly (p < .05). After 2 to 4 weeks of intervention (in situ and excessive traction), the morphology of pores in the bony end plate, their number, and the diameter had recovered significantly compared with those in Group B. The in situ traction group was superior to the excessive traction group, and 4 weeks in situ group significantly superior to the 2 weeks group. In all intervention groups, in both the inner and outer AF, mean fibril diameter decreased significantly (p < .05), although they remained larger in the excessive traction group than that in the in situ traction group. Consistent with trend in collagen fiber diameter, the outer AF was stiffer than the inner, and the modulus of the AF in each intervention group not significantly different from that of the control group (Group A) except Group C. However, within the NP, the variation in trend in diameter and modulus of collagen fibers was essentially inconsistent with that of the AF. CONCLUSIONS: Degenerated discs exhibit greater reconstruction after low tension traction. It is clear that the intervertebral disc mechanical microenvironment depends to a greater extent on low-tension traction than high-tension traction.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Disease Models, Animal , Intervertebral Disc Degeneration/therapy , Male , Rats , Rats, Sprague-Dawley , Traction
SELECTION OF CITATIONS
SEARCH DETAIL
...