Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Oncol Lett ; 27(6): 287, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38736741

ABSTRACT

Use of volatile anesthetics is associated with worse outcome following tumor resection surgery compared with the use of intravenous anesthetics. However, the underlying mechanism has not been clearly delineated yet in vivo. The EO771 cell-based congenic breast cancer model was used in the present study. Isoflurane directly binds to and inhibits two adhesion molecules, leukocyte function-associated antigen-1 (LFA-1) and macrophage-1 antigen (Mac-1). Similarly, exposure to sevoflurane, another volatile anesthetic and LFA-1 inhibitor, is associated with an increase in breast cancer size compared with non-exposure. Thus, the present study first examined the role of LFA-1 and Mac-1 in the EO771 breast cancer model. Both LFA-1 deficiency and inhibition enhanced tumor growth, which was supported by cytokine and eicosanoid data profiles. By contrast, Mac-1 deficiency did not affect tumor growth. The exposure to isoflurane and sevoflurane was associated with an increase in breast cancer size compared with non-exposure. These data suggested that isoflurane enhanced tumor growth by interacting with LFA-1. Isoflurane exposure did not affect tumor growth in LFA-1-deficient mice. In summary, the present data showed that LFA-1 deficiency facilitated breast cancer growth, and isoflurane, an LFA-1 inhibitor, also increased breast cancer growth.

2.
Front Immunol ; 15: 1359608, 2024.
Article in English | MEDLINE | ID: mdl-38380335

ABSTRACT

CD11c is widely known as a cell surface marker for dendritic cells, but we recently showed that it regulates neutrophil and T cell functions. Because we found that CD11c knockout (KO) mice had lower blood B cell counts, we characterized B cell profile in developmental stages. We found that CD11c KO recirculating and mature B cells was significantly fewer compared with wild type, associated with exaggerated proliferation and apoptosis. Because they did not express CD11c, we sought for the possibility of CD11c-mediated non-intrinsic regulation of B cell proliferation and apoptosis. Here we hypothesized that dendritic cells, major cells expressing CD11c would regulate B cells indirectly. The proteomics of dendritic cells cultured in vitro indicated the downregulation of macrophage migration inhibitory factor (MIF). Less MIF was also confirmed by ELISA. Furthermore, plasma MIF level was significantly lower in naïve CD11c KO mice. Because MIF regulates B cell survival, we demonstrated a novel regulatory mechanism of naïve B cells via CD11c.


Subject(s)
B-Lymphocytes , Integrins , Animals , Mice , Down-Regulation , Homeostasis , T-Lymphocytes
3.
Cancer Chemother Pharmacol ; 93(5): 411-425, 2024 May.
Article in English | MEDLINE | ID: mdl-38191768

ABSTRACT

BACKGROUND: Artemisinin (ART) and its derivatives are important antimalaria agents and have received increased attention due to their broad biomedical effects, such as anticancer and anti-inflammation activities. Recently, ruthenium-derived complexes have attracted considerable attention as their anticancer potentials were observed in preclinical and clinical studies. METHODS: To explore an innovative approach in colorectal cancer (CRC) management, we synthesized ruthenium-dihydroartemisinin complex (D-Ru), a novel metal-based artemisinin derivative molecule, and investigated its anticancer, anti-inflammation, and adaptive immune regulatory properties. RESULTS: Compared with its parent compound, ART, D-Ru showed stronger antiproliferative effects on the human CRC cell lines HCT-116 and HT-29. The cancer cell inhibition of D-Ru comprised G1 cell cycle arrest via the downregulation of cyclin A and the induction of apoptosis. ART and D-Ru downregulated the expressions of pro-inflammatory cytokines IL-1ß, IL-6, and IL-8. Although ART and D-Ru did not suppress Treg cell differentiation, they significantly inhibited Th1 and Th17 cell differentiation. CONCLUSIONS: Our results demonstrated that D-Ru, a novel ruthenium complexation of ART, remarkably enhanced its parent compound's anticancer action, while the anti-inflammatory potential was not compromised. The molecular mechanisms of action of D-Ru include inhibition of cancer cell growth via cell cycle arrest, induction of apoptosis, and anti-inflammation via regulation of adaptive immunity.


Subject(s)
Apoptosis , Artemisinins , Colonic Neoplasms , G1 Phase Cell Cycle Checkpoints , Humans , Artemisinins/pharmacology , Artemisinins/chemistry , Apoptosis/drug effects , Colonic Neoplasms/pathology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/immunology , G1 Phase Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Adaptive Immunity/drug effects , Ruthenium/chemistry , Ruthenium/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , HCT116 Cells , HT29 Cells , Animals , Cytokines/metabolism , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Mice
4.
Front Immunol ; 14: 1219953, 2023.
Article in English | MEDLINE | ID: mdl-37781399

ABSTRACT

Integrin αLß2 (CD11a/CD18, CD11a) is a critical leukocyte adhesion molecule in leukocyte arrest and immunological synapse formation. However, its role in the bone marrow has not been investigated in depth. Here we showed that CD11a was expressed on all subsets of hematopoietic stem and progenitor cells (HPSCs). CD11a deficiency enhanced HSPCs activity under lipopolysaccharide (LPS) stimulation as demonstrated by a higher HSPC cell count along with an increase in cell proliferation. However, our mixed chimera experiment did not support that this phenotype was driven in a cell-intrinsic manner. Rather we found that the production of IL-27, a major cytokine that drives HSPC proliferation, was significantly upregulated both in vivo and in vitro. This adds a novel role of CD11a biology.


Subject(s)
Cell Adhesion Molecules , Hematopoietic Stem Cells , Lymphocyte Function-Associated Antigen-1 , Bone Marrow , CD11a Antigen
5.
Am J Chin Med ; 51(6): 1577-1594, 2023.
Article in English | MEDLINE | ID: mdl-37465963

ABSTRACT

Colorectal cancer (CRC) is a leading cause of cancer-related death in the United States, and chronic gut inflammation is a risk factor for CRC initiation and development. Curcuma longa L., or turmeric, has become one of the most studied herbal medicines in recent years due to its anticancer potentials. It is generally accepted that the major component in turmeric is curcuminoids, and the active constituent in curcuminoids is curcumin. However, unprocessed curcumin is characterized by poor water solubility, which means low bioavailability in humans. To increase the bioavailability of curcumin, in this study, we utilized a novel surfactant-formulated curcumin (CuminUP60[Formula: see text]) and evaluated its CRC chemopreventive activities. Compared with the chemo-sensitive CRC cell line HCT-116, the management of the CRC SW-480 cell line is a challenge, since the latter is chemo-resistant. In other words, these cancer cells resist the effects of the chemotherapy. Using the newly formulated CuminUP60[Formula: see text] water solution, this study demonstrated its strong antiproliferative effects on the SW-480 cells in a dose- and time-dependent manner. This new formulation induced early apoptosis and arrested the cell cycle in the G2/M phase via the upregulation of cyclin B1. We also observed that this new formulation possessed inhibitory effects on Th17 cell differentiation, which regulates the body's immune response against gut malignancies. In summary, our results exhibited a potential clinical utility of the surfactant-formulated curcumin in chemo-resistant colorectal cancer management.


Subject(s)
Colorectal Neoplasms , Curcumin , Humans , Curcumin/pharmacology , Diarylheptanoids , Surface-Active Agents , Curcuma , Colorectal Neoplasms/drug therapy , Water
6.
Blood Adv ; 7(7): 1312-1325, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36306384

ABSTRACT

Sepsis continues to be associated with high morbidity and mortality. Currently, sepsis is managed only conservatively. In sepsis, a substantial number of neutrophils is required, leading to accelerated neutrophil production. Immature neutrophils are released into the circulation to meet a demand, despite their less effective functioning in microbial eradication. Although an intervention to provide more mature neutrophils may serve as a potential sepsis treatment, the mechanism of neutrophil differentiation and maturation remains poorly understood. We discovered that CD11c, traditionally known as a dendritic cell marker, was expressed in neutrophils and regulated neutrophil maturation and effector functions. In the absence of CD11c, neutrophil maturation was impaired in the bone marrow, concomitant with a significant increase in the proliferation and apoptosis of preneutrophils, associated with less effector functions. Under lipopolysaccharide challenge, inducing an emergent neutrophil production in the bone marrow, CD11c deficiency exaggerated the release of immature neutrophils into the circulation, associated with a significant proliferation and apoptosis of preneutrophils. In contrast, constitutively active CD11c knock-in mice showed accelerated neutrophil maturation associated with enhanced effector functions, which further supports the notion that CD11c regulates neutrophil maturation. Furthermore, the constitutively active CD11c knock-in mice offered enhanced bacterial eradication. Taken together, we discovered that CD11c was critical for the regulation of neutrophil maturation, and CD11c activation could serve as a potential target for sepsis treatment.


Subject(s)
Neutrophils , Sepsis , Animals , Mice , Bone Marrow
7.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187754

ABSTRACT

Pediatric patients with congenital heart diseases (CHD) often undergo surgical repair on cardiopulmonary bypass (CPB). Despite a significant medical and surgical improvement, the mortality of neonates and infants remains high. Damage-associated molecular patterns (DAMPs) are endogenous molecules released from injured/damaged tissues as danger signals. We examined 101 pediatric patients who underwent congenital cardiac surgery on CPB. The mortality rate was 4.0%, and the complication rate was 31.6%. We found that neonates/infants experienced multiple complications most, consistent with the previous knowledge. Neonates and infants in the complication group had received more transfusion intraoperatively than the non-complication arm with lower maximum amplitude (MA) on rewarming CPB thromboelastography (TEG). Despite TEG profiles were comparable at ICU admission between the two groups, the complication arm had higher postoperative chest tube output, requiring more blood transfusion. The complication group showed greater neutrophil extracellular traps (NETs) formation at the end of CPB and postoperatively. Plasma histones and high mobility group box 1 (HMGB1) levels were significantly higher in the complication arm. Both induced NETs in vitro and in vivo . As histones and HMGB1 target Toll-like receptor (TLR)2 and TLR4, their mRNA expression in neutrophils was upregulated in the complication arm. Taken together, NETs play a major role in postoperative complication in pediatric cardiac surgery and would be considered a target for intervention. Key points: Neonates and infants showed highest postoperative complications with more upregulation of inflammatory transcriptomes of neutrophils.Neonates and infants with organ dysfunction had more NETs formation with higher plasma histones and HMGB1 levels.

8.
Front Immunol ; 13: 1059996, 2022.
Article in English | MEDLINE | ID: mdl-36466931

ABSTRACT

Since sepsis was defined three decades ago, it has been a target of intensive study. However, there is no specific sepsis treatment available, with its high mortality and morbidity. αDß2 (CD11d/CD18) is one of the four ß2 integrin members. Its role in sepsis has been limitedly studied. Using an experimental polymicrobial sepsis model, we found that the deficiency of αDß2 was associated with less lung injury and better outcome, which was in sharp contrast to other ß2 integrin member αLß2 (CD11a/CD18), and αMß2 (CD11b/CD18). This phenotype was supported by a reduction of bacterial loads in αDß2 knockout mice. Further analysis showed that the deficiency of αDß2 led to a reduction of neutrophil cell death as well as an increase in neutrophil phagocytosis in both murine and human systems. Our data showed a unique role of αDß2 among the ß2 integrin members, which would serve as a potential target to improve the outcome of sepsis.


Subject(s)
Lung Injury , Sepsis , Humans , Animals , Mice , CD18 Antigens/genetics , Neutrophils , Macrophage-1 Antigen , Lymphocyte Function-Associated Antigen-1 , Mice, Knockout
9.
Front Immunol ; 13: 1040818, 2022.
Article in English | MEDLINE | ID: mdl-36439108

ABSTRACT

CD11c, also named integrin αX, has been deemed solely as a dendritic cell marker for decades while the delineation of its biological function was limited. In the current study, we observed in mice that CD11c deficiency led to a defect in T cell development, demonstrated by the loss of CD4+CD8+ double positive (DP) T cells, CD4+CD8-, and CD4-CD8+ single positive (SP) T cells in the thymus and less mature T cells in the periphery. By using bone marrow chimera, we confirmed that CD11c regulated T cell development in the thymus. We further showed that CD11c deficiency led to an accelerated apoptosis of CD3 positive thymocytes, but not CD4-CD8- double negative (DN) T cells. Overall, this study added one more layer of knowledge on the regulatory mechanism of late-stage T cell development that the presence of CD11c in the thymus is critical for maintaining T cell survival.


Subject(s)
Thymocytes , Thymus Gland , Mice , Animals , CD11c Antigen , Cell Differentiation , Apoptosis
10.
Immunity ; 55(8): 1354-1369.e8, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35926508

ABSTRACT

FoxP3 is an essential transcription factor (TF) for immunologic homeostasis, but how it utilizes the common forkhead DNA-binding domain (DBD) to perform its unique function remains poorly understood. We here demonstrated that unlike other known forkhead TFs, FoxP3 formed a head-to-head dimer using a unique linker (Runx1-binding region [RBR]) preceding the forkhead domain. Head-to-head dimerization conferred distinct DNA-binding specificity and created a docking site for the cofactor Runx1. RBR was also important for proper folding of the forkhead domain, as truncation of RBR induced domain-swap dimerization of forkhead, which was previously considered the physiological form of FoxP3. Rather, swap-dimerization impaired FoxP3 function, as demonstrated with the disease-causing mutation R337Q, whereas a swap-suppressive mutation largely rescued R337Q-mediated functional impairment. Altogether, our findings suggest that FoxP3 can fold into two distinct dimerization states: head-to-head dimerization representing functional specialization of an ancient DBD and swap dimerization associated with impaired functions.


Subject(s)
Core Binding Factor Alpha 2 Subunit , T-Lymphocytes, Regulatory , Core Binding Factor Alpha 2 Subunit/genetics , DNA , Dimerization , Forkhead Transcription Factors/metabolism , Homeostasis
11.
Phys Rev Lett ; 128(7): 075001, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35244411

ABSTRACT

A new method for measuring the time-dependent drive flux at the hohlraum center is proposed as a better alternative to conventional wall-based techniques. The drive flux here is obtained by simultaneous measurement of the reemitted flux and shock velocity from a three-layered "cakelike" sample. With these two independent observables, the influence induced by the uncertainty of the material parameters of the sample can be effectively decreased. The influence from the closure of the laser entrance hole, which was the main challenge in conventional wall-based techniques, was avoided through localized reemitted flux measurement, facilitating drive flux measurement throughout the entire time history. These studies pave a new way for probing the time-dependent drive flux, for both cylindrical hohlraums and novel hohlraums with six laser entrance holes.

12.
Front Immunol ; 13: 819224, 2022.
Article in English | MEDLINE | ID: mdl-35178050

ABSTRACT

Due to the plasticity of IL-17-producing CD4 T cells (Th17 cells), a long-standing challenge in studying Th17-driven autoimmune is the lack of specific surface marker to identify the pathogenic Th17 cells in vivo. Recently, we discovered that pathogenic CD4 T cells were CXCR6 positive in experimental autoimmune encephalomyelitis (EAE), a commonly used Th17-driven autoimmune model. Herein, we further revealed that peripheral CXCR6+CD4 T cells contain a functionally distinct subpopulation, which is CCR6 positive and enriched for conventional Th17 molecules (IL-23R and RORγt) and cytotoxic signatures. Additionally, spinal cord-infiltrating CD4 T cells were highly cytotoxic by expressing Granzyme(s) along with IFNγ and GM-CSF. Collectively, this study suggested that peripheral CCR6+CXCR6+CD4 T cells were Th17 cells with cytotoxic property in EAE model, and highlighted the cytotoxic granzymes for EAE pathology.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Receptors, CCR6/immunology , Receptors, CXCR6/immunology , Th17 Cells/immunology , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Interferon-gamma/immunology , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Receptors, Interleukin/immunology , Th17 Cells/pathology
13.
Mol Biol Rep ; 49(4): 2695-2709, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35040004

ABSTRACT

BACKGROUND: Artemisinin (ART) is an anti-malaria natural compound with a moderate anticancer action. As a metabolite of ART, dihydroartemisinin (DHA) may have stronger anti-colorectal cancer (CRC) bioactivities. However, the effects of DHA and ART on CRC chemoprevention, including adaptive immune regulation, have not been systematically evaluated and compared. METHODS: Coupled with a newly-established HPLC analytical method, enteric microbiome biotransformation was conducted to identify if the DHA is a gut microbial metabolite of ART. The anti-CRC potential of these compounds was compared using two different human CRC cell lines for cell cycle arrest, apoptotic induction, and anti-inflammation activities. Naive CD4+ T cells were also obtained for testing the compounds on the differentiation of Treg, Th1 and Th17. RESULTS: Using compound extraction and analytical methods, we observed for the first time that ART completely converted into its metabolites by gut microbiome within 24 h, but no DHA was detected. Although ART did not obviously influence cancer cell growth in the concentration tested, DHA very significantly inhibited the cancer cell growth at relatively low concentrations. DHA included G2/M cell cycle arrest via upregulation of cyclin A and apoptosis. Both ART and DHA downregulated the pro-inflammatory cytokine expression. The DHA significantly promoted Treg cell proliferation, while both ART and DHA inhibited Th1 and Th17 cell differentiation. CONCLUSIONS: As a metabolite of ART, DHA possessed stronger anti-CRC activities. The DHA significantly inhibited cell growth via cell cycle arrest, apoptosis induction and anti-inflammation actions. The adaptive immune regulation is a related mechanism of actions for the observed effects.


Subject(s)
Artemisinins , Colonic Neoplasms , Apoptosis , Artemisinins/pharmacology , Chemoprevention , Colonic Neoplasms/drug therapy , Colonic Neoplasms/prevention & control , Humans
14.
Biochem Biophys Res Commun ; 557: 254-260, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33894411

ABSTRACT

Isoflurane and sevoflurane are volatile anesthetics (VA) widely used in clinical practice to provide general anesthesia. We and others have previously shown that VAs have immunomodulatory effects and may have a significant impact on the progression of disease states. Flagellin is a component of Gram negative bacteria and plays a significant role in the pathophysiology of bacterial pneumonia through its binding to Toll-like Receptor 5 (TLR5). Our results showed that VAs, not an intravenous anesthetic, significantly attenuated the activation of TLR5 and the release of the neutrophil chemoattractant IL-8 from lung epithelial cells. Furthermore, flagellin-induced lung injury was significantly attenuated by VAs by inhibiting neutrophil migration to the bronchoalveolar space. The lungs of cystic fibrosis (CF) patients are highly colonized by Pseudomonas aeruginosa, which causes inflammation. The retrospective study of oxygenation in patients with CF who had received VA versus intravenous anesthesia suggested that VAs might have the protective effect for gas exchange. To understand the interaction between VAs and TLR5, a docking simulation was performed, which indicated that isoflurane and sevoflurane docked into the binding interphase between TLR5 and flagellin.


Subject(s)
Anesthetics, Inhalation/pharmacology , Cystic Fibrosis/microbiology , Epithelial Cells/drug effects , Flagellin/toxicity , Inflammation/prevention & control , Lung/drug effects , Pseudomonas Infections/drug therapy , Toll-Like Receptor 5/metabolism , Anesthetics, Inhalation/chemistry , Animals , Cell Line, Tumor , Cystic Fibrosis/complications , Epithelial Cells/metabolism , Female , Flagellin/chemistry , Humans , Inflammation/metabolism , Inflammation Mediators/metabolism , Interleukin-8/metabolism , Isoflurane/chemistry , Isoflurane/pharmacology , Lung/metabolism , Lung/microbiology , Lung/pathology , Male , Mice , Molecular Docking Simulation , NF-kappa B/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Pseudomonas Infections/complications , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/immunology , Retrospective Studies , Sevoflurane/chemistry , Sevoflurane/pharmacology , Toll-Like Receptor 5/chemistry , Toll-Like Receptor 5/genetics
15.
Int Immunopharmacol ; 93: 107425, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33540247

ABSTRACT

Previously we reported that IL-17-producing CD4 T cells (Th17) were increased in mice lacking the protease inhibitor SerpinB1 and several SerpinB1-inhibitable cysteine cathepsins were induced in the Th17 cells, most prominently cathepsin L (CtsL). Since CtsL also mediates invariant chain processing in thymic epithelial cells, deficiency of CtsL leads to impaired CD4 T cell thymic selection, which hinders the direct investigation of CD4 T cells in CtsL -/- mouse. In the current study, through transplanting the CtsL -/- bone marrow into lethally irradiated CtsL-sufficient Rag/- mice (bone marrow chimeras), we reconstituted the immune system of CtsL -/- chimeric mice, which possessed normal CD4 T cell development and allowed us to study the intrinsic role of CtsL in CD4 T cells in Th17 cell-driven autoimmune diseases. Surprisingly, we found that CtsL -/- CD4 T cells had no defects in differentiation of naïve CD4 T cells into Th1, Treg and Th17 cells in vitro. However, in vivo, in experimental autoimmune encephalomyelitis (EAE) model, deficiency of CtsL significantly decreased the activation of IL-17, GM-CSF and IFN-γ producing pathogenic CD4 T cells. Compared with wild type (wt) controls, CtsL -/- CD4 T cells were also less accumulated in the spinal cord in EAE. Thus, for the first time, our study provided the direct in vivo evidence that CtsL was involved in CD4 T cells acquiring pathogenicity in the autoimmune disease.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cathepsin L/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Spinal Cord/immunology , Animals , Cathepsin L/genetics , Cells, Cultured , Disease Models, Animal , Humans , Interferon-gamma/metabolism , Interleukin-17/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout
16.
Transl Perioper Pain Med ; 8(1): 305-311, 2021.
Article in English | MEDLINE | ID: mdl-33521166

ABSTRACT

BACKGROUND: Cecal ligation and puncture (CLP) surgery is a widely used preclinical model to induce and study sepsis because it is considered to recapitulate the course of human sepsis the most. This model is highly dependent on the polymicrobial gut flora and represents polymicrobial abdominal sepsis. While the majority of studies using CLP model have focused on the delineation of host immune responses, a limited number of reports have described the composition of microbial strains in this model, although microbial composition can significantly affect the outcome of sepsis in general. METHODS: CLP surgery was performed in mice on C57BL6/J from the Jackson laboratory. We examined the composition of microbes at the peritoneal cavity using 16S rRNA sequencing after CLP surgery at 12 and 24 hours. Baseline cecal microbial flora was also analyzed. RESULTS: The bacteria strains from the initial cecum flora consisted of mixed aerobic and anaerobic flora. There was a significant change of bacteria flora from the peritoneal cavity between 12 and 24 hours following CLP surgery. Particularly a significantly increased proportion of anaerobic microbes were noted at 24 hours after CLP surgery. We also tested bacterial composition of cecal flora of mice on the same background from the same vendor 6 months later. Baseline cecal microbial flora was different from earlier mice, showing that baseline cecal flora could be different depending on the batch of mice. CONCLUSION: There was a dynamical chance of peritoneal microbes during CLP sepsis. Potential difference in baseline cecal flora should be kept in mind upon CLP surgery even when using mice from the same vendor.

17.
Clin Immunol ; 222: 108635, 2021 01.
Article in English | MEDLINE | ID: mdl-33217544

ABSTRACT

A growing literature has shown that volatile anesthetics are promiscuous molecules targeting multiple molecules, some of which are critical for immunological functions. We focused on studies that delineated target molecules of volatile anesthetics on immune cells and summarized the effects of volatile anesthetics on immune functions. We also presented the perspectives of studying volatile anesthetics-mediated immunomodulation.


Subject(s)
Anesthetics, Inhalation/pharmacology , Macrophages/immunology , Monocytes/immunology , Neutrophils/immunology , Phagocytosis/drug effects , Desflurane/pharmacology , Humans , Isoflurane/pharmacology , Macrophages/drug effects , Monocytes/drug effects , Neutrophil Infiltration/drug effects , Neutrophil Infiltration/immunology , Neutrophils/drug effects , Phagocytosis/immunology , Sevoflurane/pharmacology
18.
Blood Adv ; 4(24): 6086-6097, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33351105

ABSTRACT

ß2 integrins are well-known leukocyte adhesion molecules consisting of 4 members: CD11a-d. Their known biological functions range widely from leukocyte recruitment, phagocytosis, to immunological synapse formation, but the studies have been primarily focused on CD11a and CD11b. CD11c is 1 of the 4 members and is extremely homologous to CD11b. It has been well known as a dendritic cell marker, but the characterization of its function has been limited. We found that CD11c was expressed on the short-term hematopoietic stem cells and multipotent progenitor cells. The lack of CD11c did not affect the number of hematopoietic stem and progenitor cells (HSPCs) in healthy CD11c knockout mice. Different from other ß2 integrin members, however, CD11c deficiency was associated with increased apoptosis and significant loss of HSPCs in sepsis and bone marrow transplantation. Although integrins are generally known for their overlapping and redundant roles, we showed that CD11c had a distinct role of regulating the expansion of HSPCs under stress. This study shows that CD11c, a well-known dendritic cell marker, is expressed on HSPCs and serves as their functional regulator. CD11c deficiency leads to the loss of HSPCs via apoptosis in sepsis and bone marrow transplantation.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Animals , CD11 Antigens , CD11c Antigen , CD18 Antigens/genetics , Mice , Mice, Knockout
19.
FASEB J ; 34(11): 14645-14654, 2020 11.
Article in English | MEDLINE | ID: mdl-32901993

ABSTRACT

Toll like receptors (TLRs) are critical receptors to respond to danger signals, and their functions are relevant in the perioperative period. We previously reported that volatile anesthetics directly bound to TLR2 and TLR4 and attenuated their functions. Given that TLR9 can respond to mitochondrial DNA, a danger signal that is released upon tissue injury, we examined the role of anesthetics on TLR9 function. Our reporter assay showed that volatile anesthetics isoflurane and sevoflurane increased the activation of TLR9, while propofol attenuated it. TLR9 activation occurs via its dimerization. The dimerization is facilitated by unmethylated cytosine-phosphate-guanine (CpG) DNA as well as DNA containing cytosine at the second position from 5'-end (5'-xCx DNA). Our structural analysis using photoactivable anesthetics and rigid docking simulation showed that isoflurane and sevoflurane bound to both TLR9 dimer interface and 5'-xCx DNA binding site. Propofol bound to the TLR9 antagonist binding site. This is the first illustration that anesthetics can affect the binding of nucleic acids to their receptor. This study sets the foundation for the effect of anesthetics on TLR9 and will pave the way for future studies to determine the significance of such interactions in the clinical setting.


Subject(s)
Anesthetics, Inhalation/pharmacology , Isoflurane/pharmacology , Sevoflurane/pharmacology , Toll-Like Receptor 9/chemistry , Anesthetics, Inhalation/chemistry , Animals , Binding Sites , HEK293 Cells , Horses , Humans , Isoflurane/chemistry , Mice , Molecular Docking Simulation , Protein Binding , Protein Multimerization , Sevoflurane/chemistry , Toll-Like Receptor 9/metabolism
20.
Int Immunopharmacol ; 87: 106826, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32717567

ABSTRACT

SerpinB1, previously known as MNEI (monocyte/neutrophil elastase inhibitor), has been well established to maintain the survival of neutrophils. Our recent studies showed that SerpinB1 is also the signature gene of IL-17-producing γδT cells and Th17 cells, and its expression is maintained by IL-23 signaling. Deficiency of SerpinB1 largely ameliorates the experimental autoimmune encephalomyelitis (EAE) with enhanced granule protease-mediated mitochondrial damage leading to suicidal cell death of pathogenic CD4 T cells. However, the mechanism that induces SerpinB1 expression in Th17 cells still remains elusive. Here, we showed that SerpinB1 was induced in Th17 cells, and plays a pivotal role to maintain the pathogenic signature of IL-23-primed Th17 cells in vitro. Its expression in Th17 cells was independent of Th17-lineage specific transcript factor retinoic acid-related orphan receptor γ t (RORγt), but was controlled by glycolysis and the mammalian target of rapamycin (mTOR) signaling. Finally, by using two specific pharmacological inhibitors, our study further deciphered that hypoxia-inducible factor 1α (HIF-1α) specifically controlled the SerpinB1 expression in Th17 cells. On the other side, when HIF-1α stabilizer Dimethyloxalylglycine (DMOG) was applied, SerpinB1 expression was significantly increased in Th17 cells. Taken together, this study is the first to report that SerpinB1 expression in Th17 cells is mediated by glycolysis/mTOR/HIF-1α pathway.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Serpins/immunology , Th17 Cells/immunology , Amino Acids, Dicarboxylic/pharmacology , Animals , Deoxyglucose/pharmacology , Glycolysis , Mice, Inbred C57BL , Mice, Knockout , Serpins/genetics , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL