Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10437, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714766

ABSTRACT

The Waveflex semi-rigid-dynamic-internal-fixation system shows good short-term effects in the treatment of lumbar degenerative diseases, but there are few long-term follow-up studies, especially for recovery of sagittal balance. Fifty patients with lumbar degenerative diseases treated from January 2016 to October 2017 were retrospectively analysed: 25 patients treated with Waveflex semi-rigid-dynamic-internal-fixation system (Waveflex group) and 25 patients treated with double-segment PLIF (PLIF group). Clinical efficacy was evaluated by Visual Analogue Scale (VAS) and Oswestry Disability Index (ODI). Imaging data before surgery and at 3 months, 1 year, and 5 years postoperatively was used for imaging indicator assessment. Local disc degeneration of the cephalic adjacent segment (including disc height index (DHI), intervertebral foramen height (IFH), and range of motion (ROM)) and overall spinal motor function (including lumbar lordosis (LL), pelvic incidence (PI), sacral slope (SS), pelvic tilt (PT), and |PI-LL|) were analysed. Regarding clinical efficacy, comparison of VAS and ODI scores between the Waveflex and PLIF groups showed no significant preoperative or postoperative differences. The comparison of the objective imaging indicators showed no significant differences in the DHI, IFH, LL, |PI-LL|, and SS values between the Waveflex and PLIF groups preoperatively and 3 months postoperatively (P > 0.05). These values were significantly different at 1 and 5 years postoperatively (P < 0.05), and the Waveflex group showed better ROM values than those of the PLIF group (P < 0.05). PI values were not significantly different between the groups, but PT showed a significant improvement in the Waveflex group 5 years postoperatively (P < 0.05). The Waveflex semi-rigid dynamic fixation system can effectively reduce the probability of intervertebral disc degeneration in upper adjacent segments. Simultaneously, patients in the Waveflex group showed postoperative improvements in LL, spinal sagittal imbalance, and quality of life.


Subject(s)
Intervertebral Disc Degeneration , Lumbar Vertebrae , Humans , Male , Female , Intervertebral Disc Degeneration/surgery , Intervertebral Disc Degeneration/diagnostic imaging , Middle Aged , Retrospective Studies , Lumbar Vertebrae/surgery , Lumbar Vertebrae/diagnostic imaging , Treatment Outcome , Adult , Range of Motion, Articular , Spinal Fusion/methods , Aged , Internal Fixators , Lordosis/diagnostic imaging , Lordosis/surgery
2.
Chembiochem ; : e202400227, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700476

ABSTRACT

Biomarkers are crucial physiological and pathological indicators in the host. Over the years, numerous detection methods have been developed for biomarkers, given their significant potential in various biological and biomedical applications. Among these, the detection system based on functionalized DNA origami has emerged as a promising approach due to its precise control over sensing modules, enabling sensitive, specific, and programmable biomarker detection. We summarize the advancements in biomarker detection using functionalized DNA origami, focusing on strategies for DNA origami functionalization, mechanisms of biomarker recognition, and applications in disease diagnosis and monitoring. These applications are organized into sections based on the type of biomarkers-nucleic acids, proteins, small molecules, and ions-and concludes with a discussion on the advantages and challenges associated with using functionalized DNA origami systems for biomarker detection.

3.
Animals (Basel) ; 14(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612271

ABSTRACT

With declining populations in the wild, captive rescue and breeding have become one of the most important ways to protect pangolins from extinction. At present, the success rate of artificial breeding is low, due to the insufficient understanding of the breeding behavior characteristics of pangolins. The automatic recognition method based on machine vision not only monitors for 24 h but also reduces the stress response of pangolins. This paper aimed to establish a temporal relation and attention mechanism network (Pangolin breeding attention and transfer network, PBATn) to monitor and recognize pangolin behaviors, including breeding and daily behavior. There were 11,476 videos including breeding behavior and daily behavior that were divided into training, validation, and test sets. For the training set and validation set, the PBATn network model had an accuracy of 98.95% and 96.11%, and a loss function value of 0.1531 and 0.1852. The model is suitable for a 2.40 m × 2.20 m (length × width) pangolin cage area, with a nest box measuring 40 cm × 30 cm × 30 cm (length × width × height) positioned either on the left or right side inside the cage. A spherical night-vision monitoring camera was installed on the cage wall at a height of 2.50 m above the ground. For the test set, the mean Average Precision (mAP), average accuracy, average recall, average specificity, and average F1 score were found to be higher than SlowFast, X3D, TANet, TSN, etc., with values of 97.50%, 99.17%, 97.55%, 99.53%, and 97.48%, respectively. The recognition accuracies of PBATn were 94.00% and 98.50% for the chasing and mounting breeding behaviors, respectively. The results showed that PBATn outperformed the baseline methods in all aspects. This study shows that the deep learning system can accurately observe pangolin breeding behavior and it will be useful for analyzing the behavior of these animals.

4.
Neuron ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38653248

ABSTRACT

White matter injury (WMI) causes oligodendrocyte precursor cell (OPC) differentiation arrest and functional deficits, with no effective therapies to date. Here, we report increased expression of growth hormone (GH) in the hypoxic neonatal mouse brain, a model of WMI. GH treatment during or post hypoxic exposure rescues hypoxia-induced hypomyelination and promotes functional recovery in adolescent mice. Single-cell sequencing reveals that Ghr mRNA expression is highly enriched in vascular cells. Cell-lineage labeling and tracing identify the GHR-expressing vascular cells as a subpopulation of pericytes. These cells display tip-cell-like morphology with kinetic polarized filopodia revealed by two-photon live imaging and seemingly direct blood vessel branching and bridging. Gain-of-function and loss-of-function experiments indicate that GHR signaling in pericytes is sufficient to modulate angiogenesis in neonatal brains, which enhances OPC differentiation and myelination indirectly. These findings demonstrate that targeting GHR and/or downstream effectors may represent a promising therapeutic strategy for WMI.

5.
Article in English | MEDLINE | ID: mdl-38538872

ABSTRACT

Acupuncture was studied to investigate the mechanism of its effect on protease vitality and free radical damage in Type I CIA rats induced by type II collagen. The study divided rats into a control group (injected with physiological saline, n = 10), a model group (injected with type II collagen, n = 10), and an intervention group (injected with type II collagen + acupuncture ST36 and GB39, 3 times a week, for a total of 4 weeks, n = 10) based on the different injected drugs. Then, various indicators of the mice were experimentally tested using joint index scoring, H&E histological staining, protein blotting, and immunohistochemistry staining methods. Acupuncture ST36 and GB39 can reduce arthritis scores, histological staining scores, and increase MVD in CIA rats. And reduce protease levels, alleviate inflammation, synovial hyperplasia, and angiogenesis. In addition, the intervention group TNF-α, IL-1ß and IL-6 mRNA were reduced, and the clearance rates of hydrogen peroxide free radicals and nitric oxide free radicals were increased. The expression levels of ROS and MDA decrease, while the expression levels of SOD increase It has been proved that acupuncture at ST36 and GB39 can inhibit the release of ROS, reduce protease activity, inflammation, synovial hyperplasia, angiogenesis and free radical damage, thus reducing the severity of CIA (Collagen-Induced Arthritis) in rats.

6.
ACS Appl Mater Interfaces ; 15(51): 59671-59680, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38102080

ABSTRACT

Two-dimensional ferroelectric materials enrich the modulation degrees of freedom in self-powered van der Waals temperature/light detectors by incorporating pyroelectric and bulk photovoltaic effects. However, in addition to the low polarization, the practical applications of these materials are limited due to the significant challenge posed by their ultrathin nature, which affects their polarization stability. In this report, we introduce a design for a dual heterostructure-stabilized van der Waals heterojunction that addresses this challenge by improving the performance and extending the operational lifetime of self-powered van der Waals temperature/light detectors. The design is demonstrated using the MoS2/CuInP2S6 (CIPS)/WSe2 van der Waals heterojunction, which exhibits sensitivity to small temperature changes induced by weak light across the ultraviolet to mid-infrared spectrum. It can generate a noticeable pyroelectric current without the need for an external voltage, and its pyroelectric coefficient exceeds 130 and 978 µC/m2 K for 45 and 70 nm CIPS, respectively. The heterojunction offers high detection accuracy, with a temperature variation sensitivity as small as 0.1 K and an optical power intensity detection range from low to 1 µW/cm2. Additionally, the heterojunction exhibits exceptional detectivity (D*) for different light wavelengths. Remarkably, the self-powered detection performance remains stable for months without obvious degradation in the natural environment. These results offer a promising solution for high-performance, self-sustaining temperature/light detection applications and pave the way for the development of future ferroelectricity-driven photodetection technologies.

7.
Mol Cell ; 83(22): 4106-4122.e10, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37977120

ABSTRACT

γ-Secretases mediate the regulated intramembrane proteolysis (RIP) of more than 150 integral membrane proteins. We developed an unbiased γ-secretase substrate identification (G-SECSI) method to study to what extent these proteins are processed in parallel. We demonstrate here parallel processing of at least 85 membrane proteins in human microglia in steady-state cell culture conditions. Pharmacological inhibition of γ-secretase caused substantial changes of human microglial transcriptomes, including the expression of genes related to the disease-associated microglia (DAM) response described in Alzheimer disease (AD). While the overall effects of γ-secretase deficiency on transcriptomic cell states remained limited in control conditions, exposure of mouse microglia to AD-inducing amyloid plaques strongly blocked their capacity to mount this putatively protective DAM cell state. We conclude that γ-secretase serves as a critical signaling hub integrating the effects of multiple extracellular stimuli into the overall transcriptome of the cell.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Mice , Animals , Humans , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Proteome/genetics , Signal Transduction , Membrane Proteins/metabolism , Alzheimer Disease/genetics
8.
Phys Chem Chem Phys ; 25(40): 27181-27188, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37789761

ABSTRACT

The two-dimensional (2D) metallic phase of MoS2, 1T-MoS2, has extraordinary electrical conductivity in contrast to the common 2D semiconducting phase, 2H-MoS2. However, the thermodynamic instabilities of 1T-MoS2 hinder its application. In this work, we investigate the possibilities of stabilizing 1T-MoS2 through heterostructure design using first-principles calculations. We found that MXene-based heterostructures could hamper phase transitions from 1T-MoS2 to 2H-MoS2 enabled by a larger phase transition kinetic energy barrier. Based on this finding, we propose a general and effective strategy for stabilizing 1T-MoS2, that is, building heterostructures using 1T-MoS2 and oxygen-functionalized MXenes. Besides, we have also observed that due to the occurrence of electron transfer in the heterostructure, 1T-MoS2 in the heterostructure exhibits improved hydrogen adsorption free energy and more active sites compared to the monolayer 1T-MoS2. These findings provide guidance for promoting and developing 1T-MoS2 for practical applications. In addition, the proposed heterostructure design strategy could inspire the study of phase transition behaviors and electrochemical properties of materials using interfaces.

9.
Materials (Basel) ; 16(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37687624

ABSTRACT

To increase the coating thickness and service life of the FeNiCrMo coating, a plasma transferred arc (PTA) double-track alloying technique was employed to enhance the surface triboperformance of the ductile iron. Optical microscopy (OM), X-ray diffraction (XRD), electron probe X-ray microanalyzer (EPMA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers hardness tester, and tribological tester were subsequently used to evaluate the effect of the double alloying treatment tracks on the microstructure and triboperformance of the coating. The results indicate that the content of the cementite in the sample with a double-track treatment increases 3.90 wt.% and the content of the martensite decreases 13.04 wt.% compared with the sample with a single-track treatment, which results in the maximum microhardness of the sample fabricated by double track increasing from 837 ± 10 HV0.2 for the sample fabricated by single track to 871 ± 7 HV0.2. Thus, the wear rate is lower than that of the sample with a single-track treatment. In addition, the distribution of alloying elements is more uniform and coating thickness is higher in the double track than those of the single-track-treated one. Therefore, the double-track PTA alloying treatment is favored for hardfacing ductile iron with a FeNiCrMo alloy coating due to its enhanced triboperformance and longer service life.

10.
Nat Commun ; 14(1): 4000, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37414757

ABSTRACT

Ferroelectric polymers have great potential applications in mechanical/thermal sensing, but their sensitivity and detection limit are still not outstanding. We propose interface engineering to improve the charge collection in a ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) copolymer (P(VDF-TrFE)) thin film via cross-linking with poly(3,4-ethylenedioxythiophene) doped with polystyrenesulfonate (PEDOT:PSS) layer. The as-fabricated P(VDF-TrFE)/PEDOT:PSS composite film exhibits an ultrasensitive and linear mechanical/thermal response, showing sensitivities of 2.2 V kPa-1 in the pressure range of 0.025-100 kPa and 6.4 V K-1 in the temperature change range of 0.05-10 K. A corresponding piezoelectric coefficient of -86 pC N-1 and a pyroelectric coefficient of 95 µC m-2 K-1 are achieved because more charge is collected by the network interconnection interface between PEDOT:PSS and P(VDF-TrFE), related to the increase in the dielectric properties. Our work shines a light on a device-level technique route for boosting the sensitivity of ferroelectric polymer sensors through electrode interface engineering.


Subject(s)
Engineering , Motion Pictures , Electrodes , Poly A , Polymers
11.
Nutrients ; 15(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37432144

ABSTRACT

The study investigated the effect of pterostilbene (PTE) on intestinal glucose absorption and its underlying mechanisms in high-intensity swimming exercise (HISE)-treated mice. Male C57BL/6 mice were treated with PTE for 4 weeks and performed high-intensity swimming training in the last week. Intestinal epithelial cells (IECs) were pretreated with 0.5 and 1.0 µM PTE for 24 h before being incubated in hypoxia/reoxygenation condition. Intestinal glucose absorption was detected by using an oral glucose tolerance test and d-xylose absorption assay, and the levels of factors related to mitochondrial function and pyroptosis were measured via western blot analyses, cell mito stress test, and quantitative real-time polymerase chain reaction. In vivo and in vitro, the results showed that PTE attenuated HISE-induced intestinal glucose absorption dysfunction and pyroptosis in mice intestine. Moreover, PTE inhibited NLRP3 inflammasome and the mitochondrial homeostasis as well as the ROS accumulation in IEC in vitro. Additionally, knockdown of SIRT3, a major regulator of mitochondria function, by siRNA or inhibiting its activity by 3-TYP abolished the effects of PTE on pyroptosis, mitochondrial homeostasis, and ROS generation of IEC in vitro. Our results revealed that PTE could alleviate HISE-induced intestinal glucose absorption dysfunction associated with the inhibition of NLRP3 inflammasome-induced IECs pyroptosis.


Subject(s)
Glucose , Swimming , Male , Animals , Mice , Mice, Inbred C57BL , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pyroptosis , Reactive Oxygen Species , Intestines
12.
Phys Chem Chem Phys ; 25(29): 19963-19969, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37458765

ABSTRACT

Solid-state multilevel data storage devices based on ferroelectric materials possess significant potential for use as artificial synapses in building biomimetic neural networks with low energy consumption and efficient data processing capabilities. To enable multilevel data storage, precise control of the ferroelectric domain through voltage pulses is essential. In this study, we investigate the manipulation of ferroelectric nanodomain structures using a nanotip and demonstrate their evolution under controlled application of electric pulses with varying strength and duration. The results highlight the differences in electric-field-driven ferroelectric nanodomain structures between (001)-/(101)- and (111)-oriented PbZr0.2Ti0.8O3 thin films. Interestingly, the latter exhibits highly anisotropic domain wall motion characteristics. The (111)-oriented PbZr0.2Ti0.8O3/SrRuO3 heterostructure demonstrates the best performance in increasing the domain radius with respect to electric pulse strength and duration. It shows at least three resistance states with a high switching ratio, making it a promising candidate for multilevel data storage applications. Additionally, the self-reversal rates of upward and downward domains differ and must be considered in designing and implementing multilevel data storage systems for stability and effectiveness. These findings reveal the potential of ferroelectric nanodomain structures for data storage and pave the way for nanotip-controlled artificial synapses.

13.
Adv Mater ; 35(38): e2302664, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37289569

ABSTRACT

Exciton coupling in molecular aggregates plays a vital role in impacting and fine-tuning optoelectronic materials and their efficiencies in devices. A versatile platform to decipher aggregation-property relationships is built around multichromophoric architectures. Here, a series of cyclic diketopyrrolopyrrole (DPP) oligomers featuring nanoscale gridarene structures and rigid bifluorenyl spacers are designed and synthesized via one-pot Friedel-Crafts reaction. DPP dimer [2]Grid and trimer [3]Grid, which are cyclic rigid nanoarchitectures of rather different sizes, are further characterized via steady-state and time-resolved absorption and fluorescence spectroscopies. They exhibit monomer-like spectroscopic signatures in the steady-state measurements, from which null exciton couplings are derived. Moreover, in an apolar solvent, high fluorescence quantum yields and excited-state dynamics that resembled DPP monomer are gathered. In a polar solvent, the localized singlet excited state on a single DPP dissociates into the adjacent null coupling DPP with charge transfer characteristics. This pathway facilitates the evolution of the symmetry-broken charge-separated state (SB-CS). Notable is the fact that the SB-CS of [2]Grid is, on one hand, in equilibrium with the singlet excited state and promotes, on the other hand, the formation of the triplet excited state with a yield of 32% via charge recombination.

14.
Angew Chem Int Ed Engl ; 62(32): e202304205, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37313787

ABSTRACT

MXenes are 2D materials with great potential in various applications. However, the degradation of MXenes in humid environments has become a main obstacle in their practical use. Here we combine deep neural networks and an active learning scheme to develop a neural network potential (NNP) for aqueous MXene systems with ab initio precision but low cost. The oxidation behaviors of super large aqueous MXene systems are investigated systematically at nanosecond timescales for the first time. The oxidation process of MXenes is clearly displayed at the atomic level. Free protons and oxides greatly inhibit subsequent oxidation reactions, leading to the degree of oxidation of MXenes to exponentially decay with time, which is consistent with the oxidation rate of MXenes measured experimentally. Importantly, this computational study represents the first exploration of the kinetic process of oxidation of super-sized aqueous MXene systems. It opens a promising avenue for the future development of effective protection strategies aimed at controlling the stability of MXenes.

15.
Microbiol Spectr ; 11(3): e0307922, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37014208

ABSTRACT

Bax-interacting factor-1 (Bif-1) is a multifunctional protein involved in apoptosis, autophagy, and mitochondrial morphology. However, the associations between Bif-1 and viruses are poorly understood. As discrete Bif-1 isoforms are selectively expressed and exert corresponding effects, we evaluated the effects of neuron-specific/ubiquitous Bif-1 isoforms on rabies virus (RABV) proliferation. First, infection with the RABV CVS-11 strain significantly altered Bif-1 expression in mouse neuroblastoma (N2a) cells, and Bif-1 knockdown in turn promoted RABV replication. Overexpression of neuron-specific Bif-1 isoforms (Bif-1b/c/e) suppressed RABV replication. Moreover, our study showed that Bif-1c colocalized with LC3 and partially alleviated the incomplete autophagic flux induced by RABV. Taken together, our data reveal that neuron-specific Bif-1 isoforms impair the RABV replication process by abolishing autophagosome accumulation and blocking autophagic flux induced by the RABV CVS-11 strain in N2a cells. IMPORTANCE Autophagy can be triggered by viral infection and replication. Autophagosomes are generated and affect RABV replication, which differs by viral strain and infected cell type. Bax-interacting factor-1 (Bif-1) mainly has a proapoptotic function but is also involved in autophagosome formation. However, the association between Bif-1-involved autophagy and RABV infection remains unclear. In this study, our data reveal that a neuron-specific Bif-1 isoform, Bif-1c, impaired viral replication by unchoking autophagosome accumulation induced by RABV in N2a cells to a certain extent. Our study reveals for the first time that Bif-1 is involved in modulating autophagic flux and plays a crucial role in RABV replication, establishing Bif-1 as a potential therapeutic target for rabies.


Subject(s)
Rabies virus , Rabies , Animals , Mice , Rabies virus/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology , Autophagy , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Isoforms/pharmacology , Cell Proliferation
16.
Chemosphere ; 325: 138380, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36907492

ABSTRACT

Efficient, stable, and easily producible electrodes are useful for treating dye wastewater through electrochemical oxidation. In this study, an Sb-doped SnO2 electrode with TiO2 nanotubes as the middle layer (TiO2-NTs/SnO2-Sb) was prepared through an optimized electrodeposition process. Analyses of the coating morphology, crystal structure, chemical state, and electrochemical properties revealed that tightly packed TiO2 clusters provided a larger surface area and more contact points, which is conducive to reinforcing the binding of SnO2-Sb coatings. Compared with a Ti/SnO2-Sb electrode without a TiO2-NT interlayer, the catalytic activity and stability of the TiO2-NTs/SnO2-Sb electrode significantly improved (P < 0.05), as reflected by the 21.8% increase in the amaranth dye decolorization efficiency and 200% increase in the service life. The effects of current density, pH, electrolyte concentration, initial amaranth concentration, and the interaction between various combinations of parameters on the electrolysis performance were investigated. Based on response surface optimization, the maximum decolorization efficiency of the amaranth dye could reach 96.2% within 120 min under the following set of optimized parameter values: 50 mg L-1 amaranth concentration, 20 mA cm-2 current density, and 5.0 pH. A potential degradation mechanism of the amaranth dye was proposed based on the experimental results of a quenching test, ultraviolet-visible spectroscopy, and high-performance liquid chromatography-mass spectrometry. This study provides a more sustainable method for fabricating SnO2-Sb electrodes with TiO2-NT interlayers to treat refractory dye wastewater.


Subject(s)
Nanotubes , Water Pollutants, Chemical , Wastewater , Amaranth Dye , Tin Compounds/chemistry , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Titanium/chemistry , Electrodes , Nanotubes/chemistry
17.
J Environ Manage ; 333: 117461, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36773477

ABSTRACT

The water level of Lake Qinghai, the largest lake on the Qinghai-Tibetan Plateau, has increased continuously, at an average speed of 0.21 m per year since 2005, causing a rapid expansion of the lake area. We investigated the hydrological processes of Lake Qinghai and the surrounding watershed that have influenced water level and lake area from 1956 to 2019. Relationships among water level, climate change and human activities were also assessed. Water level and lake area were positively correlated with precipitation and runoff into the lake, and negatively correlated with evaporation. Climate change factors including precipitation and runoff were the primary causes of lake level change, whereas human activities, including variation in a human footprint index, land use, and grassland irrigation, were secondary factors. A time series model forecasted that from 2020 to 2050 water levels will increase further by 2.45 m. Although this increase in water level may have some benefits, such as reduced local desertification, the expansion of lake area will continue to flood low beaches, pasture lands, near shore infrastructure and roads, and impact tourism locations. However, continued water level rise may also have negative ecological effects, such as reduce habitat of seasonal birds and reduced water quality due to erosion and sediment resuspension in shallow nearshore lake areas. Local stakeholders, government authorities, and scientists should give greater attention to anticipated changes in water level, and further ecological studies and infrastructure adaptation measures should be implemented.


Subject(s)
Ecosystem , Lakes , Humans , Lakes/chemistry , Hydrology , Water Quality , Climate Change , China
18.
Medicine (Baltimore) ; 102(5): e32864, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36749277

ABSTRACT

To study the mechanism of 25 ingredient decoction for setting a fracture (TDSF) in fracture treatment using network pharmacology. The TCMSP, BATMAN-TCM, HERB, and Uniprot protein databases were used to identify the active ingredients and targets of TDSF. Fracture-related targets were collected from the gene cards and the online mendelian inheritance in man databases. The acquisition of common genes of active compounds of TDSF and disease fractures was carried out using the Venny software. The Cytoscape 3.7.1 software and String database were used to construct a network diagram of drug-active ingredient-target-disease and the main core targets were obtained by protein interaction analysis. The Metascape platform was used to perform gene oncology functional and Kyoto encyclopedia of genes and genomes pathway enrichment analyses for common drug-disease targets. A total of 311 active ingredients and 348 targets were associated with TDSF, with 5197 targets related to fractures and 224 common targets between the 2 keywords. Key targets included serine/threonine protein kinase 1, tumor necrosis factor, interleukin 6, tumor protein 53, and vascular endothelial growth factor. Important roles of the following pathway were identified: cancer, lipid, and atherosclerosis; AGE-RAGE signaling pathway in diabetic complications; chemical carcinogenesis - receptor activation; PI3K -Akt signaling pathway; platinum drug resistance; cAMP signaling pathway; transcriptional mis regulation in cancer; serotonergic synapse; and malaria. TDSF mainly treats fractures by acting on multiple targets, such as serine/threonine protein kinase 1, tumor necrosis factor, interleukin 6, tumor protein 53, and vascular endothelial growth factor, and regulating the PI3K/AKT and cAMP signaling pathways.


Subject(s)
Drugs, Chinese Herbal , Network Pharmacology , Humans , Interleukin-6 , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Vascular Endothelial Growth Factor A , Cyclin-Dependent Kinases , Tumor Necrosis Factor-alpha , Databases, Genetic , Threonine , Serine , Medicine, Chinese Traditional
19.
Pain Res Manag ; 2023: 1157611, 2023.
Article in English | MEDLINE | ID: mdl-36643939

ABSTRACT

Objective: To explore the influence and potential factors of the bone cement dispersion state on residual pain after vertebral augmentation. Methods: The cases included in this retrospective cohort study were patients treated with vertebral augmentation (VA) for osteoporotic vertebral compression fractures (OVCFs) between July 2018 and June 2021. According to the type of cement diffusion distribution, the patients were divided into a sufficient diffusion group (Group A) and an insufficient diffusion group (Group B). The differences in the baseline data, visual analog scale (VAS), Oswestry disability index score (ODI), injured vertebral height (IVH), and local kyphosis angle (LKA) between the two groups were analyzed. Assessments were performed preoperatively on the 2nd day postoperation and at the last follow-up. The imaging data of injured vertebrae were accurately reconstructed by a GE AW4.7 workstation, and the differences in the vertebral body volume, bone cement volume, and bone cement volume ratio were compared between the groups. Result: After screening, 36 patients were included. (1) The postoperative VAS and ODI scores of the two groups were significantly improved compared with the preoperative scores. (2) On the 2nd day postoperation and the last follow-up, the VAS and ODI scores of Group A were significantly different from those of Group B, and Group A outperformed Group B. (3) The IVH and LKA of the two groups were improved after the operation, and no significant difference was found between the groups. (4) Significant differences were found in the bone cement volume and bone cement volume ratio between the groups, and Group A was larger than Group B. Conclusions: Sufficient bone cement diffusion can reduce residual pain after vertebral augmentation.


Subject(s)
Fractures, Compression , Osteoporotic Fractures , Spinal Fractures , Vertebroplasty , Humans , Bone Cements/therapeutic use , Fractures, Compression/diagnostic imaging , Fractures, Compression/surgery , Spinal Fractures/diagnostic imaging , Spinal Fractures/surgery , Retrospective Studies , Treatment Outcome , Osteoporotic Fractures/diagnostic imaging , Osteoporotic Fractures/surgery , Spine , Pain
20.
Nutrients ; 15(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36678226

ABSTRACT

BACKGROUND: Previous studies indicate that dihydromyricetin (DHM) could alleviate intestinal inflammation and improve intestinal barrier integrity, yet the underlying mechanism remains obscure. METHODS: C57BL/6 male mice were fed with a control diet, high-fat diet (HFD), or HFD + DHM diet for 12 weeks. The intestinal permeability and expression of intestinal tight junction (TJ) protein were detected to evaluate the effects of DHM on intestinal barrier integrity. The interleukin 22 (IL-22) production of group 3 innate lymphoid cells (ILC3s) in small intestine lamina propria was tested to clarify the effects of DHM on ILC3s. In addition, an MNK3 cell line, which expresses the same transcription factors and cytokines as ILC3, was used to investigate the molecular mechanism under DHM-induced IL-22 expression. RESULTS: DHM effectively protected HFD-fed mice against intestinal barrier destruction by promoting ILC3 activation and IL-22 secretion, and IL-22 expression increased the expression levels of TJ molecules to protect intestinal barrier integrity. Moreover, DHM increased activation of the AMPK/SIRT3/STAT3 pathway, which in turn promoted IL-22 expression in MNK3 cells. CONCLUSIONS: DHM improved IL-22 production in ILC3 cells to alleviate HFD-induced intestinal barrier destruction via the AMPK/SIRT3/STAT3 pathway.


Subject(s)
Sirtuin 3 , Mice , Male , Animals , Sirtuin 3/genetics , AMP-Activated Protein Kinases , Immunity, Innate , Lymphocytes , Mice, Inbred C57BL , Interleukins , Signal Transduction , Interleukin-22
SELECTION OF CITATIONS
SEARCH DETAIL
...