Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
ACS Appl Mater Interfaces ; 16(12): 14922-14928, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38470147

ABSTRACT

Ni-rich cathodes have recently gained significant attention as next-generation cathodes for lithium-ion batteries. However, their relatively high oxidative surface should be reduced to control the high surface reactivity because the capacity retention decreases rapidly in the batteries. Herein, a simple and effective method to pretreat LiNi0.8Mn0.1Co0.1O2 (NMC811) particles using a cosolvent for improving the battery performance is reported. Imitating the interfacial reaction in practical cells, an artificial layer is created via a spontaneous redox reaction between the cathode and the organic solvent. The artificial layer comprises metal-organic compounds with reduced transition-metal cations. Benefiting from the artificial layer, the cells deliver high capacity retention at a high current density and better rate capability, which might result from the low and stable interfacial resistance of the modified NMC811 cathode. Our approach can effectively reduce the high oxidative surface of most oxide cathode materials and induce a long cyclic lifespan and high capacity retention in most battery systems.

2.
Biotechnol Biofuels Bioprod ; 16(1): 7, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36635732

ABSTRACT

BACKGROUND: Microtubules in cells are closely related to the growth and metabolism of microalgae. To date, the study of microalgal microtubules has mainly concentrated on revealing the relationship between microtubule depolymerization and synthesis of precursors for flagellar regeneration. While information on the link between microtubule depolymerization and biosynthesis of precursors for complex organic matter (such as lipid, carbohydrate and protein), is still lacking, a better understanding of this could help to achieve a breakthrough in lipid regulation. With the aim of testing the assumption that microtubule disruption could regulate carbon precursors and redirect carbon flow to promote lipid accumulation, Chlorella sorokiniana SDEC-18 was pretreated with different concentrations of oryzalin. RESULTS: Strikingly, microalgae that were pretreated with 1.5 mM oryzalin accumulated lipid contents of 41.06%, which was attributed to carbon redistribution induced by microtubule destruction. To promote the growth of microalgae, two-stage cultivation involving microtubule destruction was employed, which resulted in the lipid productivity being 1.44 times higher than that for microalgae with routine single-stage cultivation, as well as yielding a desirable biodiesel quality following from increases in monounsaturated fatty acid (MUFA) content. Furthermore, full extraction of lipid was achieved after only a single extraction step, because microtubule destruction caused removal of cellulose synthase and thereby blocked cellulose biosynthesis. CONCLUSIONS: This study provides an important advance towards observation of microtubules in microalgae through immunocolloidal gold techniques combined with TEM. Moreover, the observation of efficient lipid accumulation and increased cell fragility engendered by microtubule destruction has expanded our knowledge of metabolic regulation by microtubules. Finally, two-stage cultivation involving microtubule destruction has established ideal growth, coupling enhanced lipid accumulation and efficient oil extraction; thus gaining advances in both applied and fundamental research in algal biodiesel production.

3.
Water Res ; 229: 119471, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36535089

ABSTRACT

The technology of cultivating salt-tolerant limnetic microalgae in seawater reduces the freshwater demand and costs of biodiesel production. However, all current trials still occur on the bench scale, and efforts for pilot-scale operation are urgently needed. This study firstly optimised the diameter of the photobioreactors (PBRs) to 0.2 m, as the single module to produce lipid-rich Golenkinia sp. SDEC-16 because of the better algal growth and light attenuation in the PBRs, and then established a 1000 L algal cultivation system. In a medium of seawater supplemented with monosodium glutamate wastewater at a ratio of 1:1000 (S-MSGW), the biomass productivity was 0.26 g/L/d, which was approaching the 0.30 g/L/d obtained in BG11, and the lipid productivity (98.99 mg/L/d) was doubled in comparison to growth in BG11. C16-C18 accounted for more than 98% of the total fatty acid in S-MSGW, and the biodiesel properties also met the biodiesel standards. The input cost of the biodiesel in this pilot-scale system was estimated to be 2.2 $/kg. When considering the carbon reduction and diversified application of the biomass, Golenkinia sp. would annually capture 186.77 kg/m3 PBR of CO2, and yield an output-to-input ratio (OIR) of 3.4 in S-MSGW, higher than the 2.8 in BG11.


Subject(s)
Microalgae , Wastewater , Biofuels/analysis , Fatty Acids , Biomass , Seawater
4.
RSC Adv ; 12(46): 29991-30000, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36321107

ABSTRACT

Residues of ciprofloxacin (CIP) in the environment pose a threat to human health and ecosystems. This study investigated the degradation of CIP by persulfate (PS) activated with pyrite (FeS2). Results showed that when [CIP] = 30 µM, [FeS2] = 2.0 g L-1, and [PS] = 1 mM, the CIP removal rate could reach 94.4% after 60 min, and CIP mineralization rate reached 34.9%. The main free radicals that degrade CIP were SO4˙- and HO˙, with contributions of 34.4% and 35.7%, respectively. Additionally, compared to the control (ultrapure water), CIP in both tap water and river water was not degraded. However, acidification could eliminate the inhibition of CIP degradation in tap water and river water. Furthermore, acidic tailwater from CIP degradation could be utilized to adjust the pH of untreated CIP, which could greatly promote the degradation of CIP and further reduce disposal costs. The reaction solution was not significantly biotoxic and three degradation pathways of CIP were investigated. Based on the above results and the characterization of FeS2, the mechanism of CIP degradation in the FeS2/PS system was that FeS2 activated PS to generate Fe(iii) and SO4˙-. The sulfide in FeS2 reduced Fe(iii) to Fe(ii), thus achieving an Fe(iii)/Fe(ii) cycle for CIP degradation.

5.
Water Sci Technol ; 85(10): 2912-2927, 2022 May.
Article in English | MEDLINE | ID: mdl-35638796

ABSTRACT

Degradation mechanism of methyl orange (MO), a typical azo dye, with pyrite (FeS2) activated persulfate (PS) was explored. The results showed that when the initial concentration of MO was 0.1 mM, FeS2 was 1.6 g/L and PS was 1.0 mM, the removal rate of MO could reach 92.9% in 150 min, and the removal rate of total organic carbon could reach 14.1%. In addition, both pH ≤ 2 and pH ≥ 10 could have an inhibitory effect in the FeS2/PS system. Furthermore, Cl- and low concentrations of HCO-3 had little effect on the degradation of MO with FeS2/PS. However, H2PO-4 and high concentrations of HCO-3 could inhibit the degradation of MO in the system. Besides, MO in river water and tap water were not degraded in FeS2/PS system, but acidification (pH = 4) would greatly promote the degradation. In addition, the removal rate of MO with FeS2/PS could still reach about 90% after five cycles of FeS2. Furthermore, the intermediates and possible degradation pathways were speculated by LC-MS, and the degradation mechanism of MO by FeS2/PS was that the cycle of Fe(III)/Fe(II) could continuously activate persulfate to produce SO4•-. The results could provide technical support for azo dye degradation in the FeS2/PS system.


Subject(s)
Sulfates , Water , Azo Compounds , Ferric Compounds , Iron , Sulfides
6.
Bioresour Technol ; 315: 123761, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32652437

ABSTRACT

Previous study has demonstrated that freshwater can be replaced with seawater for dilution of feed to algal production and wastewater treatment, but high harvest cost in suspended-growth systems is still a troublesome limitation for large-scale production. Therefore, a novel inclined algal biofilm photobioreactor (IABPBR) was constructed for algal bioproduct production and treatment of seawater-diluted anaerobically digested effluent (SA) in this study. Fluffy polyester was selected as the best carrier for the algal biofilm among ten discarded materials. With the help of phytohormones, the viability of SDEC-18 was clearly enhanced and an algal biomass productivity of 5.66 g/m2/d was achieved. The SDEC-18 biofilm provided removal capacities of 0.65, 0.25 and 3.31 g/m2/d for TN, TP and COD. Phytohormones clearly enhanced the lipid biosynthesis, with an extraordinary lipid productivity of 3.98 g/m2/d being achieved. Moreover, an automatic harvesting system was designed for the efficient harvesting process during large-scale production.


Subject(s)
Microalgae , Photobioreactors , Biofilms , Biomass , Cost-Benefit Analysis , Lipids , Plant Growth Regulators , Seawater , Wastewater
7.
Water Res ; 170: 115305, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31765826

ABSTRACT

Anaerobic digestion is sensitive to a wide variety of inhibitory substances that are the primary cause of anaerobic digester failure. Herein, an anaerobic digestion (AD) tank, which also functioned as the anodic chamber of an algae-assisted microbial fuel cell (AMFC), was established to treat food waste (FW) under an inhibition-relieved condition. About 2.9 L of CH4 was yielded by the AD-AMFC system, which was more than double the CH4 produced by the AD system, and 34% higher than that from the AD-MFC system. The result suggests that the bioelectrochemical system and algae successfully improved the AD performance and energy production. The AD-AMFC system had the highest volatile fatty acid (VFA) concentration in the initial 20 days, but it maintained the lowest VFA concentration in the following days. Those results indicate that the AMFC shortened the acclimatisation phase of the AD process and then alleviated the adverse impact of VFAs by consuming VFAs as a substrate for electricity generation. Alkalinity generated by algal growth and cathode reactions buffered the H+ that migrated from the anolyte, which facilitated the pH recovery of the AD process. Ammonia inhibition of the AD was also relieved by the AMFC through reduction of the ammonia concentration to less than 500 mg/L in the anolyte. Additionally, the COD removal rate was improved to 89%, since the AMFC facilitated the decomposition of large molecules. The present study developed a practical structure for an AD tank and also explained the reason as to why the AMFC improved the AD performance.


Subject(s)
Bioelectric Energy Sources , Refuse Disposal , Anaerobiosis , Bioreactors , Electrodes , Food , Methane , Motor Vehicles
8.
Water Res ; 164: 114955, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31408757

ABSTRACT

Photosynthetic microbial fuel cells (PMFCs) allow renewable energy production from wastewater. However, system scale-up is still a major challenge hindering the use of PMFCs for practical applications. Herein, a PMFC stack, which consisted of multiple anodic chambers installed in an algal raceway pond (ARP), was established to recovery energy from anaerobically digested effluent with the assistance of a prototypical capacitor circuit. The highest voltage output of the stack reached 1.4 V with four PMFC units and four capacitors. The system can produce stable voltages through controlling charging and discharging frequencies and the voltage output remained stable around 0.60 V when the time interval decreased to 2 s. During long-term operation, the highest power density of the stack with capacitors reached 2.34 W/m3, which was 77% higher than that without capacitors (1.32 W/m3). About 98% of the ammonium in the anolyte was removed, resulting from the ammonium migration effect. The dynamics of bacterial community compositions were not greatly influenced by the capacitor circuit, and the stack with capacitors had a more stable bacterial community compared to the stack without capacitors. The variations in bacterial community composition following power density changes indicated that members of the Clostridia and Betaproteobacteria were related to power generation. Bacteria affiliated to Bacteroidetes were inhibited when power density was high, though their numbers were enriched at the end of the process. This study promotes a practical method for developing the PMFC technology into real-world applications, and furthermore reveals the main bacteria that play vital roles in power generation by analysing the anodic bacterial community during the whole process.


Subject(s)
Bioelectric Energy Sources , Electricity , Electrodes , Photosynthesis , Ponds , Wastewater
9.
Water Environ Res ; 91(7): 616-627, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30742347

ABSTRACT

Alum-sludge ceramsite and denitrifying bacteria (XP-1, XP-2, CL-1, CL-3) were used as substrate and constructed biofilm for enhancing the removal of pollutants from wastewater. The results showed that, due to the large specific surface area, the maximum growth rate was 0.49 mg/(g·day) on the sludge ceramsite, and the mass of biofilm attached onto sludge ceramsite was 5.98 times higher than that when using commercial ceramsite as substrate. Better removal performance could be achieved with the combination of sludge ceramsite and bacteria, viz. 98.6%, 91.0%, and 85.8% reduction in total phosphorus (TP), total nitrogen (TN), and chemical oxygen demand (COD), respectively. Pseudo-first-order kinetics, pseudo-second-order kinetics, Monod kinetics, and multiple Monod kinetics combined with continuous-flow-stirred tank reactor (CFSTR) behavior were used to investigate the dynamics of the pollutant removal processes. The decrease in band brightness for bacteria attached onto sludge ceramsite was 11.5%, while it was more than 35.7% on commercial ceramsite during wastewater treatment according to results from denaturing gradient gel electrophoresis (DGGE). Sludge ceramsite played an important role in maintaining quantities and activities of denitrifying bacteria, and application of sludge ceramsite substrate and denitrifying bacteria was a reliable method to enhance the removals of phosphorus, nitrogen, and COD from domestic wastewater. PRACTITIONER POINTS: Alum-sludge ceramsite was a good substrate for phosphorus adsorption and denitrifying bacterial growth. There was 5.98 times more biofilm on sludge ceramsite than on commercial ceramsite The biofilm of denitrifying bacteria on sludge ceramsite was more stable. High removals of TP (98.6%), TN (90.1%) and COD (85.81%) were achieved.


Subject(s)
Biofilms , Complex Mixtures/chemistry , Denitrification , Nitrogen/isolation & purification , Phosphorus/isolation & purification , Water Purification/methods , Microbiota , Sewage , Wetlands
10.
Bioresour Technol ; 247: 904-914, 2018 Jan.
Article in English | MEDLINE | ID: mdl-30060429

ABSTRACT

Nitrogen starvation has been an effective method to enhance the lipid content in microalgae, but low biomass means the method is far from large-scale application. In this study a combination of phytohormones, indolebutyric acid (IBA) and naphthylacetic acid (NAA), was used to verify whether phytohormones can assist two microalgae, Scenedesmus SDEC-8 and Chlorella sorokiniana SDEC-18, to resist nitrogen depletion, and achieve satisfactory biomass and lipid productivity. The two algae grew poorly but accumulated high lipid concentrations under nitrogen-depleted condition without phytohormones. However, phytohormone addition maintained the biomass concentration, and furthermore yielded lipid productivities (SDEC-8: 26.7mg/L/d, SDEC-18: 25.9mg/L/d) almost 3 times as high as those in BG11. The oxidative damage caused by nitrogen depletion could be alleviated by phytohormones. The investigation demonstrated that phytohormone supplementation simultaneously improved lipid accumulation and maintained growth of microalgae, while also optimizing the biodiesel properties compared with the tactic of nitrogen depletion alone.


Subject(s)
Microalgae , Nitrogen/metabolism , Plant Growth Regulators , Biofuels , Biomass , Chlorella , Lipid Metabolism , Lipids , Scenedesmus
11.
Bioresour Technol ; 267: 192-200, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30025314

ABSTRACT

The algal extracellular substances (AESs), mainly excreted in the lag and stationary phases, inhibited the algal growth and culture recycle. The AESs consisted of protein-like substances and saccharides, which restrained the algal lipid and protein biosynthesis. Moreover, the increasing reactive oxygen species and anti-oxidative enzymes caused by AESs led to the oxidative damage and suppressed the cell activity. The AESs affected the cells through two possible ways: one is the AESs adhered to the cell surfaces; another is the cells yielded signal molecules in response to the AESs. Fortunately, the ultrasound degraded the AESs into small molecules, which clearly alleviated the limitation and recovered the algal biomass and metabolism. This study demonstrated that ultrasonication is a promising way to alleviate the AESs, which facilitating the medium recycle for long-term continuous microalgae production.


Subject(s)
Microalgae , Recycling , Biomass , Lipids , Ultrasonics
12.
Bioresour Technol ; 256: 11-16, 2018 May.
Article in English | MEDLINE | ID: mdl-29427862

ABSTRACT

Anaerobically digested effluent from kitchen waste (ADE-KW) was used herein as the substrate of a tubular photosynthetic microbial fuel cell (PMFC) for power production, and also, after being diluted, as a medium for cultivation of algae in the cathodic chamber. Adding 3 mg/L phosphorus to the catholyte could efficiently enhance the algal growth and the PMFC performance. About 0.94 g/L algal biomass and 0.57 kWh/m3-ADE-KW bioelectricity were obtained from the PMFC. Soluble microbial byproduct-like material and aromatic proteins were the dominant organics in the ADE-KW, which were readily degradable in the system. About 79% of the 1550 mg/L ammonium in the anolyte transferred to the catholyte through the cation exchange membrane. The ammonium was removed mainly as electron acceptors at the cathode after being oxidized by oxygen, whereas algal assimilation only account for about 14.6% of the overall nitrogen.


Subject(s)
Ammonium Compounds , Bioelectric Energy Sources , Photosynthesis , Biomass , Electrodes , Wastewater
13.
Bioresour Technol ; 250: 449-456, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29197271

ABSTRACT

Salinity stress has been verified to be a successful approach to enhance lipid production in high-starch marine algae, and salinity-induced carbon flow switching has been proposed as an algal response specific to brackish water. With the aim of testing this assumption, Chlorella sorokiniana SDEC-18, a low-starch freshwater alga, was grown in BG11 medium with NaCl addition at various concentrations (0, 2, 5, 10, 20, and 30 g/L). The results showed that salinity stress promoted carbon redistribution and starch conversion to lipid. The most desirable lipid productivity of 19.66 mg/L·d occurred in the medium with 20 g/L NaCl, about 2.16 times as high as that in the BG11 medium control. Moreover, microalgae with salinity stress were able to produce biodiesel with a more suitable cloud point, due to a decrease in the saturated fatty acid content. This therefore confirms that low-starch freshwater microalgae can also carry out salinity-induced carbon flow switching.


Subject(s)
Chlorella , Lipids , Biofuels , Biomass , Carbon , Fresh Water , Microalgae , Salinity , Starch
14.
Bioresour Technol ; 239: 87-96, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28501687

ABSTRACT

Applying phytohormones has been considered a promising way to increase lipid productivity of microalgae recently. Eight dosages of auxin phytohormones were tested to exploit the effects and mechanism of such stimulants on microalgae. The optimal one was 20mgL-1, leading to an increase in biomass concentration of 59.3% for Scenedesmus sp. SDEC-8 and 76.6% for Chlorella sorokiniana SDEC-18, meanwhile the lipid content rose from 18.74% to 56.17% (SDEC-8) and from 19.69% to 55.76% (SDEC-18). Proton pumps were activated by the stimulants, causing excretion of H+, which resulted in pH decline and a favorable condition for growth. Pigments changes implied that hormones strengthened the dark reactions of photosynthesis. Auxin addition led to a 3µm increase in diameter for C. sorokiniana SDEC-18 and altered the cellular pattern of Scenedesmus sp. SDEC-8, which improved the cells elongation. Therefore, supplement of auxin phytohormones simultaneously increased the viability and lipid production of microalgae.


Subject(s)
Chlorella , Plant Growth Regulators , Biomass , Carbon , Microalgae , Scenedesmus
15.
Bioresour Technol ; 240: 130-136, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28314663

ABSTRACT

The aim of this work was to study Golenkinia sp. and microbial fuel cells (MFCs) for the treatment of anaerobically digested effluent from kitchen waste (ADE-KW) with different dilution factors. A dual-chamber MFC was fabricated for treating ADE-KW in the two chambers of the MFC and harvesting Golenkinia sp. All the anodic TN was removed more than 80%. COD removal efficiency increased from 48.2% to 76% when the dilution factor increased from 1 to 4. Maximum COD and TN removal rates were 3.56 and 3.71mg·L-1·h-1 when ADE-KW was treated without dilution in the anodic chamber. All the cathodic TN and TP removal efficiencies were approximately 90%. The highest open circuit voltage (OCV) and power density were approximately 400mV and 400mW when ADE-KW was treated directly (undiluted) in the MFC, with the highest biomass and total lipid content production of Golenkinia sp. in the cathodic chamber.


Subject(s)
Bioelectric Energy Sources , Chlorophyta , Biomass , Electricity , Electrodes
16.
Biotechnol Biofuels ; 10: 76, 2017.
Article in English | MEDLINE | ID: mdl-28352300

ABSTRACT

BACKGROUND: Although numerous studies have used wastewater as substitutes to cultivate microalgae, most of them obtained weaker algal viability than standard media. Some studies demonstrated a promotion of phytohormones on algal growth in standard media. For exploiting a strategy to improve algal biomass accumulation in effluent from anaerobic digestion of kitchen waste (ADE-KW), the agricultural phytohormones gibberellin, indole-3-acetic acid, and brassinolide (GIB) were applied to Chlorella SDEC-11 and Scenedesmus SDEC-13 at different stages of algal growth. Previous studies have demonstrated a promotion of phytohormones on algal growth in standard media, but attempts have been scarce, focusing on wastewater cultivation system. In addition, the effects of wastewater on algal morphology and ultrastructure have not been revealed so far, much less on the mechanism of the role of phytohormones on algae. RESULTS: ADE-KW disrupted the membranes of nuclear and chloroplast in ultrastructural cell of SDEC-11, and reduced the room between chloroplast and cell membrane and increased the starch size of SDEC-13. This reduced algal growth and biocompound accumulation, but SDEC-13 had greater adaptation to ADE-KW than SDEC-11. Moreover, inoculation with an algal seed pretreated with GIB aided the adaptability and viability of algae in ADE-KW, which for SDEC-13 was even promoted to the level in BG11. GIB mitigated the inhibition of ADE-KW on algal cell division and photosynthetic pigments and apparatus, and increased lipid droplets, which might result from the change in the synthesis and the fate of nicotinamide adenine dinucleotide phosphate. GIB addition significantly promoted lipid productivity of the two algal species, following 13 mg L-1 d-1 of SDEC-11 in B+ADE-KW and especially 13 mg L-1 d-1 of SDEC-13 achieved during the priming of algal seed with the hormones, which is 139% higher than 5 mg L-1 d-1 achieved in ADE-KW control. CONCLUSIONS: Agricultural phytohormones could be applied as a strategy for promoting biomass and biocompound accumulation of algae in ADE-KW, in which pretreatment of the algal inoculum with hormones is a unique way to help algae survive under stress. Considering our results and treatment technology for kitchen waste, a more feasible and economic plant can be built incorporating anaerobic digestion, algae cultivation with ADE-KW assisted with phytohormones, and biodiesel production.

17.
Bioresour Technol ; 218: 902-8, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27441827

ABSTRACT

Five strains algae (Golenkinia sp. SDEC-16, Chlorella vulgaris, Selenastrum capricornutum, Scenedesmus SDEC-8 and Scenedesmus SDEC-13) were screened as an effective way to promote recover electricity from MFC for kitchen waste anaerobically digested effluent (KWADE) treatment. The highest OCV, power density, biomass concentration and total lipid content were obtained with Golenkinia sp. SDEC-16 as the co-inoculum, which were 170mV, 6255mWm(-3), 325mgL(-1) and 38%, respectively. Characteristics of the organics in KWADE were analyzed, and the result showed that the hydrophilic and acidic fractions were more readily degraded, compared to the neutral fractions during the operation. Maximum COD and TN removal efficiency were 43.59% and 37.39% when inoculated with Golenkinia sp. SDEC-16, which were roughly 3.22 and 3.04 times higher than that of S. capricornutum. This study demonstrated that Golenkinia sp. SDEC-16 was a promising species for bioelectricity generation, lipid production and KWADE treatment.


Subject(s)
Bioelectric Energy Sources/microbiology , Biofuels/microbiology , Refuse Disposal/methods , Anaerobiosis , Biomass , Chlorophyta , Electrodes
18.
Bioresour Technol ; 203: 50-5, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26720139

ABSTRACT

Food waste contains large amount of organic matter that may be troublesome for handing, storage and transportation. A microbial fuel cell (MFC) was successfully constructed with different inoculum densities of Chlorella vulgaris for promoting food waste treatment. Maximum COD removal efficiency was registered with 44% and 25 g CODL(-1)d(-1) of substrate degradation rate when inoculated with the optimal initial density (150 mg L(-1)) of C. vulgaris, which were 2.9 times and 3.1 times higher than that of the abiotic cathode. With the optimum inoculum density of C. vulgaris, the highest open circuit voltage, working voltage and power density of MFC were 260 mV, 170 mV and 19151 mW m(-3), respectively. Besides the high biodiesel quality, promoted by MFC stimulation the biomass productivity and highest total lipid content of C. vulgaris were 207 mg L(-1)d(-1) and 31%, which were roughly 2.7 times and 1.2 times higher than the control group.


Subject(s)
Bioelectric Energy Sources/microbiology , Chlorella vulgaris/metabolism , Garbage , Lipid Metabolism , Biomass , Chlorella vulgaris/chemistry , Chlorella vulgaris/growth & development , Electricity , Electrodes , Fatty Acids/analysis , Food , Lipids
19.
Bioresour Technol ; 197: 178-84, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26340025

ABSTRACT

The low productivity of microalgae has restricted scale-up application of microalgae-based biodiesel processes. Diethyl aminoethyl hexanoate (DA-6) was investigated to enhance the biomass and metabolite productivity. At a very low concentration (10(-7)M) DA-6 made Chlorella ellipsoidea SDEC-11 and Scenedesmus quadricauda SDEC-13 obtain enlarged cell size, 114mgL(-1)d(-1), 101mgL(-1)d(-1) biomass productivity and 39.13mgL(-1)d(-1), 32.69mgL(-1)d(-1) lipid productivity, respectively. Biomass and lipid productivity of SDEC-11 and SDEC-13 were 100mgL(-1)d(-1) and 30.05mgL(-1)d(-1), 94mgL(-1)d(-1) and 28.43mgL(-1)d(-1), respectively, without DA-6. Twice hormone dose in 10(-6)M DA-6 medium resulted in higher biomass productivity (106mgL(-1)d(-1)) and longer exponential growth of SDEC-13. DA-6 also ensured the property of microalgae biodiesel to meet the EN 14214 standard. The current investigation demonstrated that DA-6 accelerated the microalgae growth and simultaneously improved the quality and quantity of lipid for biodiesel production.


Subject(s)
Biofuels , Caproates/pharmacology , Chlorella/drug effects , Microalgae/drug effects , Scenedesmus/drug effects , Biomass , Chlorella/metabolism , Lipid Metabolism/drug effects , Lipids/pharmacology , Microalgae/classification , Microalgae/metabolism , Scenedesmus/metabolism
20.
PLoS One ; 10(3): e0120966, 2015.
Article in English | MEDLINE | ID: mdl-25807372

ABSTRACT

Jarosite [(Na+, K+, NH4+, H3O+)Fe3(SO4)2(OH)6] is an efficient scavenger for trace metals in Fe- and SO42--rich acidic water. During the biosynthesis of jarosite promoted by Acidithiobacillus ferrooxidans, the continuous supply of high oxygen levels is a common practice that results in high costs. To evaluate the function of oxygen in jarosite production by A. ferrooxidans, three groups of batch experiments with different oxygen supply levels (i.e., loading volume percentages of FeSO4 solution of 20%, 40%, and 70% v/v in the flasks), as well as three groups of sealed flask experiments with different limiting oxygen supply conditions (i.e., the solutions were not sealed at the initial stage of the ferrous oxidation reaction by paraffin but were rather sealed at the end of the ferrous oxidation reaction at 48 h), were tested. The formed Fe-precipitates were characterized via X-ray powder diffraction and scanning electron microscope-energy dispersive spectral analysis. The results showed that the biosynthesis of jarosite by A. ferrooxidans LX5 could be achieved at a wide range of solution loading volume percentages. The rate and efficiency of the jarosite biosynthesis were poorly correlated with the concentration of dissolved oxygen in the reaction solution. Similar jarosite precipitates, expressed as KFe3 (SO4) 2(OH)6 with Fe/S molar ratios between 1.61 and 1.68, were uniformly formed in unsealed and 48 h sealed flasks. These experimental results suggested that the supply of O2 was only essential in the period of the oxidation of ferrous iron to ferric but was not required in the period of ferric precipitation.


Subject(s)
Acidithiobacillus/metabolism , Ferric Compounds/metabolism , Oxygen/metabolism , Sulfates/metabolism , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Linear Models , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , Sulfates/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL