Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202403617, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819860

ABSTRACT

All-solid-state lithium batteries (ASSBs) have received increasing attentions as one promising candidate for the next-generation energy storage devices. Among various solid electrolytes, sulfide-based ASSBs combined with layered oxide cathodes have emerged due to the high energy density and safety performance, even at high-voltage conditions. However, the interface compatibility issues remain to be solved at the interface between the oxide cathode and sulfide electrolyte. To circumvent this issue, we propose a simple but effective approach to magic the adverse surface alkali into a uniform oxyhalide coating on LiNi0.8Co0.1Mn0.1O2 (NCM811) via a controllable gas-solid reaction. Due to the enhancement of the close contact at interface, the ASSBs exhibit improved kinetic performance across a broad temperature range, especially at the freezing point. Besides, owing to the high-voltage tolerance of the protective layer, ASSBs demonstrate excellent cyclic stability under high cutoff voltages (500 cycles ~ 94.0% at 4.5 V, 200 cycles ~ 80.4% at 4.8 V). This work provides insights into using a high voltage stable oxyhalide coating strategy to enhance the development of high energy density ASSBs.

2.
Angew Chem Int Ed Engl ; 63(11): e202318960, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38196292

ABSTRACT

Hard carbon (HC) as a potential candidate anode for sodium-ion batteries (SIBs) suffers from unstable solid electrolyte interphase (SEI) and low initial Coulombic efficiency (ICE), which limits its commercial applications and urgently requires the emergence of a new strategy. Herein, an organic molecule with two sodium ions, disodium phthalate (DP), was successfully engineered on the HC surface (DP-HC) to replenish the sodium loss from solid electrolyte interphase (SEI) formation. A stabilized and ultrathin (≈7.4 nm) SEI was constructed on the DP-HC surface, which proved to be simultaneously suitable in both ester and ether electrolytes. Compared to pure HC (60.8 %), the as-designed DP-HC exhibited a high ICE of >96.3 % in NaPF6 in diglyme (G2) electrolyte, and is capable of servicing consistently for >1600 cycles at 0.5 A g-1 . The Na3 V2 (PO4 )3 (NVP)|DP-HC full-cell with a 98.3 % exceptional ICE can be cycled stably for 450 cycles, demonstrating the tremendous practical application potential of DP-HC. This work provides a molecular design strategy to improve the ICE of HC, which will inspire more researchers to concentrate on the commercialization progress of HC.

3.
J Med Chem ; 66(12): 8267-8280, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37257073

ABSTRACT

Blocking the Kelch-like epichlorohydrin-related protein 1 (Keap1)-nuclear factor-erythroid 2 related factor 2 (Nrf2) pathway is a promising strategy to alleviate acute lung injury (ALI). A naphthalensulfonamide NXPZ-2, targeting Keap1-Nrf2 interaction to release Nrf2, was confirmed to exhibit significant anti-inflammatory activities, however, accompanying nonideal solubility and PK profiles. To further improve the properties, twenty-nine novel naphthalenesulfonamide derivatives were designed by a fragment-based strategy. Among them, compound 10u with a (R)-azetidine group displayed the highest PPI inhibitory activity (KD2 = 0.22 µM). The hydrochloric acid form of 10u exhibited a 9-fold improvement on water solubility (S = 484 µg/mL, pH = 7.0) compared to NXPZ-2 (S = 55 µg/mL, pH = 7.0). It could significantly reduce LPS-induced lung oxidative damages and inflammations in vitro and in vivo. Furthermore, a satisfactory pharmacokinetic property was revealed. In conclusion, the novel azetidine-containing naphthalenesulfonamide represents a promising drug candidate for Keap1-targeting ALI treatment.


Subject(s)
Acute Lung Injury , NF-E2-Related Factor 2 , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Epichlorohydrin , Acute Lung Injury/drug therapy
4.
J Med Chem ; 66(7): 5261-5278, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36908007

ABSTRACT

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are serious and devastating pulmonary manifestations of acute systemic inflammation with high morbidity and mortality worldwide. Currently, there are no specific effective treatments for ALI/ARDS. RIPK1, which contributes to necroptosis and inflammation, is confirmed to be a promising strategy for the treatment of ALI. Herein, 23 benzothiazole derivatives were designed to specifically target RIPK1, and SZM-1209 showed high anti-necroptotic activity (EC50 = 22.4 nM) and kinase selectivity on RIPK1 over RIPK3 (Kd,RIPK1 = 85 nM, Kd,RIPK3 > 10,000 nM). In a mTNF-α-induced systemic inflammatory response syndrome (SIRS) model, SZM-1209 could completely reverse mouse deaths with significant anti-inflammatory effects. Furthermore, in a NNK short-term intratracheal exposure-induced ALI model, SZM-1209 significantly alleviated ALI by reducing pulmonary edema and pathological damage. Collectively, activities of SZM-1209 against RIPK1, necroptosis, SIRS, and ALI warranted further investigation of optimized benzothiazoles as promising lead structures against ALI-related diseases.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Mice , Animals , Necroptosis , Systemic Inflammatory Response Syndrome , Benzothiazoles/pharmacology , Benzothiazoles/therapeutic use , Benzothiazoles/chemistry , Inflammation/pathology , Protein Kinases/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Apoptosis
5.
Nutrients ; 15(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36771198

ABSTRACT

Lung cancer is the second most common cancer in the world. Cigarette smoking is strongly connected with lung cancer. Benzo[a]pyrene (BaP) and 4-(N-methyl-N-nitrosamine)-1-(3-pyridyl)-butanone (NNK) are the main carcinogens in cigarette smoking. Evidence has supported the correlation between these two carcinogens and lung cancer. Epidemiology analysis suggests that lung cancer can be effectively prevented through daily diet adjustments. This review aims to summarize the studies published in the past 20 years exploring dietary phytochemicals using Google Scholar, PubMed, and Web of Science databases. Dietary phytochemicals mainly include medicinal plants, beverages, fruits, vegetables, spices, etc. Moreover, the perspectives on the challenges and future directions of dietary phytochemicals for lung cancer chemoprevention will be provided. Taken together, treatment based on the consumption of dietary phytochemicals for lung cancer chemoprevention will produce more positive outcomes in the future and offer the possibility of reducing cancer risk in society.


Subject(s)
Anticarcinogenic Agents , Lung Neoplasms , Nitrosamines , Humans , Nicotiana/adverse effects , Anticarcinogenic Agents/adverse effects , Carcinogens , Nitrosamines/adverse effects , Lung , Lung Neoplasms/prevention & control , Carcinogenesis , Phytochemicals/adverse effects
6.
J Med Chem ; 66(4): 3073-3087, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36724216

ABSTRACT

Systemic inflammatory response syndrome (SIRS), characterized by severe systemic inflammation, represents a major cause of health loss, potentially leading to multiple organ failure, shock, and death. Exploring potent RIPK1 inhibitors is an effective therapeutic strategy for SIRS. Recently, we described thio-benzoxazepinones as novel RIPK1 inhibitors and confirmed their anti-inflammatory activity. Herein, we further synthesized novel thio-benzoxazepinones by introducing substitutions on the benzene ring by an alkynyl bridge in order to extend the chemical space from the RIPK1 allosteric to ATP binding pockets. The in vitro cell and kinase assays found that compounds 2 and 29 showed highly potent activity against necroptosis (EC50 = 3.7 and 3.2 nM) and high RIPK1 inhibitory activity (Kd = 9.7 and 70 nM). Prominently, these two analogues possessed better in vivo anti-inflammatory effects than the clinical candidate GSK'772 and effectively blocked hypothermia and deaths in a TNFα-induced SIRS model.


Subject(s)
Protein Kinases , Systemic Inflammatory Response Syndrome , Humans , Necrosis , Systemic Inflammatory Response Syndrome/drug therapy , Protein Kinases/metabolism , Adenosine Triphosphate/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinases , Apoptosis , Protein Kinase Inhibitors/pharmacology
7.
J Med Chem ; 65(12): 8289-8302, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35687391

ABSTRACT

Directly inhibiting the Keap1-Nrf2 protein-protein interaction has been investigated as a promising strategy to activate Nrf2 for anti-inflammation. We previously reported a naphthalensulfonamide Keap1-Nrf2 inhibitor NXPZ-2, but have not determined the exact binding mode with Keap1. This symmetric naphthalenesulfonamide compound has relatively low solubility. Herein, we first determined a crystal complex (resolution: 2.3 Å) of human Keap1 Kelch domain with NXPZ-2. Further optimizations on the solvent exposed region obtained asymmetric naphthalenesulfonamides and three crystal structures of Keap1 in complex with designed compounds. Among them, the asymmetric piperazinyl-naphthalenesulfonamide 6k with better aqueous solubility showed the best KD2 value of 0.21 µM to block the interaction. The productions of ROS and NO and the expression of TNF-α were inhibited by 6k in the in vitro model. This compound could relieve inflammations by significantly increasing the Nrf2 nuclear translocation in the LPS-induced ALI model with promising pharmacokinetic properties.


Subject(s)
NF-E2-Related Factor 2 , Crystallography , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Protein Binding , Solvents , Sulfonamides
8.
Chem Biol Interact ; 344: 109496, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33939976

ABSTRACT

An increased risk of developing lung cancer has been associated with exposure to cigarette smoke carcinogens and alteration in the gut microbiota. However, there is limited understanding about the impact of exposure to NNK and BaP, the two important components of cigarette smoke carcinogens, on gut microbiota in lung cancer. The present study characterized the influence of exposure to a mixture of NNK plus BaP on lung cancer, feces metabolite composition, and gut microbiota in the A/J mice. The A/J mice were administered NNK plus BaP, and the changes in gut microbiota and feces metabolic profiles were characterized using 16S rRNA gene sequencing and metabolomics, respectively. Results presented here illustrated that a mixture of NNK plus BaP exposure triggered lung carcinogenesis as shown by light microscopy and histopathological evaluation. 16S rRNA sequencing of gut microbiota indicated that exposure to NNK plus BaP could modified fecal bacterial composition. Elevated levels of Actinobacteria, Bifidobacterium, and Intestinimonas and reduced levels of Alistipes, Odoribacter, and Acetatifactor are associated with NNK plus BaP triggered lung cancer. In addition, metabolomics profile revealed the regulation of metabolism including purine metabolism, phenylalanine metabolism, primary bile acid biosynthesis, steroid hormone biosynthesis, biosynthesis of unsaturated fatty acids, linoleic acid metabolism, and others. In conclusion, the results provide some guidance for using gut microbes as biomarkers to assess the progression of lung cancer, and lead to interventional targets to control the development of the disease in the future.


Subject(s)
Adenocarcinoma of Lung/metabolism , Benzo(a)pyrene/pharmacology , Carcinogens/pharmacology , Gastrointestinal Microbiome/drug effects , Metabolome/drug effects , Nitrosamines/pharmacology , Adenocarcinoma of Lung/complications , Adenocarcinoma of Lung/pathology , Animals , Bacteria/metabolism , Dysbiosis/etiology , Dysbiosis/metabolism , Feces/chemistry , Feces/microbiology , Female , Lung/pathology , Lung Neoplasms/complications , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Metabolomics , Mice, Inbred Strains
9.
Sci Bull (Beijing) ; 65(21): 1812-1822, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-36659121

ABSTRACT

Development of high-voltage electrolytes with non-flammability is significantly important for future energy storage devices. Aqueous electrolytes are inherently non-flammable, easy to handle, and their electrochemical stability windows (ESWs) can be considerably expanded by increasing electrolyte concentrations. However, further breakthroughs of their ESWs encounter bottlenecks because of the limited salt solubility, leading to that most of the high-energy anode materials can hardly function reversibly in aqueous electrolytes. Here, by introducing a non-flammable ionic liquid as co-solvent in a lithium salt/water system, we develop a "water in salt/ionic liquid" (WiSIL) electrolyte with extremely low water content. In such WiSIL electrolyte, commercial niobium pentoxide (Nb2O5) material can operate at a low potential (-1.6 V versus Ag/AgCl) and contribute its full capacity. Consequently, the resultant Nb2O5-based aqueous lithium-ion capacitor is able to operate at a high voltage of 2.8 V along with long cycling stability over 3000 cycles, and displays comparable energy and power performance (51.9 Wh kg-1 at 0.37 kW kg-1 and 16.4 Wh kg-1 at 4.9 kW kg-1) to those using non-aqueous electrolytes but with improved safety performance and manufacturing efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...