Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 15: 1352443, 2024.
Article in English | MEDLINE | ID: mdl-38721473

ABSTRACT

SVhawkeye is a novel visualization software created to rapidly extract essential structural information from third-generation sequencing data, such as data generated by PacBio or Oxford Nanopore Technologies. Its primary focus is on visualizing various structural variations commonly encountered in whole-genome sequencing (WGS) experiments, including deletions, insertions, duplications, inversions, and translocations. Additionally, SVhawkeye has the capability to display isoform structures obtained from iso-seq data and provides interval depth visualization for deducing local copy number variation (CNV). One noteworthy feature of SVhawkeye is its capacity to genotype structural variations, a critical function that enhances the accuracy of structural variant genotyping. SVhawkeye is an open-source software developed using Python and R languages, and it is freely accessible on GitHub (https://github.com/yywan0913/SVhawkeye).

2.
Materials (Basel) ; 17(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612214

ABSTRACT

The present investigation endeavors to explore the influence of rare earth elements on the strength and plasticity characteristics of low-carbon microalloyed steel under tensile loading conditions. The findings from the conducted tensile tests indicate that the incorporation of rare earths leads to a notable enhancement in the yield strength, ultimate tensile strength, and ductility properties of the steel. A comparative analysis of the microstructures reveals that the presence of rare earths significantly refines and optimizes the microstructure of the microalloyed steel. This optimization is manifested through a reduction in grain size, diminution of inclusion sizes, and a concomitant rise in their number density. Moreover, the addition of rare earths is observed to foster an increase in the volumetric fraction of carbides within the steel matrix. These multifaceted microstructural alterations collectively contribute to a substantial strengthening of the microalloyed steel. Furthermore, it is elucidated that the synergistic interaction between rare earth elements and both carbon (C) and niobium (Nb) in the steel matrix augments the extent of the Lüders strain region during the tensile deformation of specimens. This phenomenon is accompanied by the effective modification of inclusions by the rare earths, which serves to mitigate stress concentrations at the interfaces between the inclusions and the surrounding matrix. This article systematically evaluates the modification mechanism of rare earth microalloying, which provides a basis for broadening the application of rare earth microalloying in microalloyed steel.

3.
Phys Chem Chem Phys ; 25(24): 16559-16569, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37309184

ABSTRACT

The coexistence of spin-orbit coupling and piezoelectricity in a single material may have potential application in multifunctional devices, including spintronics, nanorobotics and piezotronics. Spin-orbit coupling provides a new means to manipulate electron's spin without an additional external magnetic field, while piezoelectricity refers to the interplay between mechanical stresses and electric polarization. Using first-principles calculations, the structural, electronic, optical, spin, and piezoelectric properties of the Janus Ge2XY (X ≠ Y = P, As, Sb, and Bi) monolayers were systematically investigated. All the Ge2XY are energetically and dynamically stable in the α phase. At the GW level, Ge2AsSb, Ge2AsBi, and Ge2SbBi have direct fundamental band gaps of 0.65, 0.64, and 0.91 eV. At the GW + BSE level, their optical gaps are 0.42, 0.45, and 0.63 eV, and the optical absorption coefficients can reach about 10-5 cm-1 in the infrared light region, which reveals that they have potential for application in infrared photodetectors. For Ge2PBi, Ge2AsBi, and Ge2SbBi containing the heavy Bi element, the lowermost conduction band and uppermost valence band have large spin splitting along the M-K and K-Γ lines, and the bands near the Fermi level possess Rashba spin splitting at the Γ point. Ge2PBi and Ge2SbBi have both large in-plane piezoelectric coefficients d11 (-0.75 and -3.18 pm V-1) and out-of-plane piezoelectric coefficients d31 (0.37 and 0.30 pm V-1). Our findings are helpful to understand the mechanism of the spin-orbit physics and piezoelectricity of Janus Ge2XY monolayers and guide experiments in exploring novel multifunctional materials.

4.
J Phys Condens Matter ; 34(28)2022 May 12.
Article in English | MEDLINE | ID: mdl-35443234

ABSTRACT

First-principles calculations are used to study the structure, magnetism and mechanical anisotropy properties of M6C (M = Fe, Mo) carbides. The stability of alloy carbide M6C can be improved when Mo atoms occupy the 48f Wyckoff position. Fe3Mo3C with Mo atoms occupying 48f position and Fe atoms occupying 16d and 32e positions has the best structural stability. The magnetic moment is triggered when the Fe content is approximately 0.5, suggesting that there exists a critical value between the paramagnetic nature and ferromagnetism. Carbides with Fe content above 0.5 have stronger magnetism. Higher Fe content corresponds to the stronger chemical bonding of carbides, resulting in improved elastic properties when Mo atoms are held in 48f position. The special carbides Fe4Mo2C and Fe3Mo3C (Fe at 48f site, Mo at 16d and 32e sites) correspond to the excellent mechanical properties. These results are helpful in providing a theoretical foundation of the possible direction for the advances of the excellent physical properties in Mo-containing steel.

5.
Phys Chem Chem Phys ; 24(7): 4425-4436, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35113108

ABSTRACT

Vertically stacking two-dimensional materials into van der Waals (vdW) heterostructures (HS) is deemed to be an effective strategy to tailor their physical properties and enrich their applications in modern nanoelectronics. Here, we study the geometry, electronic, and optical properties of Janus Ga2SeTe/In2SSe heterostructures by using first-principles calculations. We consider four models of Ga2SeTe/In2SSe heterostructures with an alternative chalcogen atom layer sequence and five potential stacking configurations, and find that the most energy favorable stacking pattern is AB stacking for each model. The heterostructures form type II alignment with a direct band gap. Moreover, the band gap values are highly dependent on the magnitude of the electric dipole, which is related to the sublayer intrinsic dipole direction and interface charge transfer. Additionally, the optical absorption of the heterostructures is intensified in the visible and ultraviolet regime. Furthermore, we predict two heterostructures with the band edge straddling the water redox potential level. These findings can help in understanding the tailored properties of the heterostructures based on Janus two-dimensional materials, and guide experiments in designing novel optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...