Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 471
Filter
1.
Sci Rep ; 14(1): 22457, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39341872

ABSTRACT

Chemical modifications to mRNA respond dynamically to environmental cues and are important modulators of gene expression. Nanopore direct RNA sequencing has been applied for assessing the presence of pseudouridine (ψ) modifications through basecalling errors and signal analysis. These approaches strongly depend on the sequence context around the modification, and the occupancies derived from these measurements are not quantitative. In this work, we combine direct RNA sequencing of synthetic RNAs bearing site-specific modifications and supervised machine learning models (ModQuant) to achieve near-analytical, site-specific ψ quantification. Our models demonstrate that the ionic current signal features important for accurate ψ classification are sequence dependent and encompass information extending beyond n + 2 and n - 2 nucleotides from the ψ site. This is contradictory to current models, which assume that accurate ψ classification can be achieved with signal information confined to the 5-nucleotide k-mer window (n + 2 and n - 2 nucleotides from the ψ site). We applied our models to quantitatively profile ψ occupancy in five mRNA sites in datasets from seven human cell lines, demonstrating conserved and variable sites. Our study motivates a wider pipeline that uses ground-truth RNA control sets with site-specific modifications for quantitative profiling of RNA modifications. The ModQuant pipeline and guide are freely available at https://github.com/wanunulab/ModQuant .


Subject(s)
Pseudouridine , RNA, Messenger , Pseudouridine/metabolism , Pseudouridine/genetics , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Nanopores , Sequence Analysis, RNA/methods , RNA/genetics , RNA/metabolism
2.
Adv Sci (Weinh) ; : e2403542, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264262

ABSTRACT

Despite the widespread adoption of emergency coronary reperfusion therapy, reperfusion-induced myocardial injury remains a challenging issue in clinical practice. Following myocardial reperfusion, S100A8/A9 molecules are considered pivotal in initiating and regulating tissue inflammatory damage. Effectively reducing the S100A8/A9 level in ischemic myocardial tissue holds significant therapeutic value in salvaging damaged myocardium. In this study, HA (hemagglutinin)- and RAGE (receptor for advanced glycation end products)- comodified macrophage membrane-coated siRNA nanoparticles (MMM/RNA NPs) with siRNA targeting S100A9 (S100A9-siRNA) are successfully prepared. This nanocarrier system is able to target effectively the injured myocardium in an inflammatory environment while evading digestive damage by lysosomes. In vivo, migration of MMM/RNA NPs to myocardial injury lesions is confirmed in a myocardial ischemia-reperfusion injury (MIRI) mouse model. Intravenous injection of MMM/RNA NPs significantly reduced S100A9 levels in serum and myocardial tissues, further decreasing myocardial infarction area and improving cardiac function. Targeted reduction of S100A8/A9 by genetically modified macrophage membrane-coated nanoparticles may represent a new therapeutic intervention for MIRI.

3.
J Org Chem ; 89(18): 13137-13149, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39223946

ABSTRACT

The chiral binaphthol-catalyzed enantioselective conjugate addition of alkenylboronic acids and heteroarylboronic acids to cyclic N-sulfonyl ketimines is reported, providing the 1,4-addition products in high yields and moderate to excellent enantioselectivities (up to >99% ee). This mild, scalable catalytic system exhibits high efficiency and broad substrate scopes. Additionally, arylboronic acids were viable nucleophiles under more forcing conditions.

4.
Nat Commun ; 15(1): 7249, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179537

ABSTRACT

Imbalance of proinflammatory and anti-inflammatory responses plays a crucial role in the progression of abdominal aortic aneurysms. ILF3, a known modulator of the innate immune response, is involved in cardiovascular diseases. This study aims to investigate the role of ILF3 in abdominal aortic aneurysm formation. Here, we use multi-omics analyzes, transgenic male mice, and multiplex immunohistochemistry to unravel the underlying involvement of ILF3 in abdominal aortic aneurysms. The results show that macrophage ILF3 deficiency attenuates abdominal aortic aneurysm progression, while elevated macrophage ILF3 exacerbates abdominal aortic aneurysm lesions. Mechanistically, we reveal that macrophagic ILF3 increases NF-κB activity by hastening the decay of p105 mRNA, leading to amplified inflammation in macrophages. Meanwhile, ILF3 represses the anti-inflammatory action by inhibiting the Keap1-Nrf2 signaling pathway through facilitating the ILF3/eIF4A1 complex-mediated enhancement of Keap1 translational efficiency. Moreover, Bardoxolone Methyl treatment alleviates the severity of abdominal aortic aneurysm lesions in the context of elevated ILF3 expression. Together, our findings underscore the significance of macrophage ILF3 in abdominal aortic aneurysm development and suggest its potential as a promising therapeutic target for abdominal aortic aneurysms.


Subject(s)
Aortic Aneurysm, Abdominal , Inflammation , Macrophages , Nuclear Factor 90 Proteins , Signal Transduction , Animals , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/genetics , Male , Macrophages/metabolism , Macrophages/immunology , Mice , Nuclear Factor 90 Proteins/metabolism , Nuclear Factor 90 Proteins/genetics , Inflammation/metabolism , Inflammation/pathology , NF-kappa B/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Mice, Inbred C57BL , Mice, Transgenic , Disease Models, Animal , Mice, Knockout
5.
World J Clin Cases ; 12(23): 5431-5440, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39156087

ABSTRACT

BACKGROUND: Primary renal Ewing's sarcoma (ES) is extremely rare, and only two cases causing Cushing's syndrome (CS) have been reported to date. We report that the case of an 18-year-old patient is diagnosed primary renal ES with typical CS characterized by purple stripes, weight gain, and hypertension. CASE SUMMARY: CS was first diagnosed by laboratory testing. A huge tumor was revealed in the kidney following an imaging examination. Moreover, brain and bone metastases were observed. After comprehensive treatment, primarily based on surgery, primary renal ES was pathologically diagnosed with a typical EWSR1-FLI1 genetic mutation through genetic testing. Furthermore, the glucocorticoid level returned to normal. By the ninth postoperative month of follow-up, the patient was recovering well. Cushing-related symptoms had improved, and a satisfactory curative effect was achieved. CONCLUSION: Primary renal ES, a rare adult malignant tumor, can cause CS and a poor prognosis.

6.
Am J Transl Res ; 16(7): 2877-2888, 2024.
Article in English | MEDLINE | ID: mdl-39114699

ABSTRACT

OBJECTIVE: This study aims to elucidate the mechanism of action and impact of the "Xuanshen Yishen Mixture" (XYM) on hypertension. METHODS: Active components were identified and potential targets were predicted using the Traditional Chinese Medicine Systems Pharmacology database. Hypertension-related targets were collected from GeneCards, DRUGBANK, OMIM, TTD, and PharmaGKB databases. Intersections of disease and drug targets were visualized using the R package "VennDiagram". A protein-protein interaction network was established via the STRING database. GO function enrichment and KEGG pathway analyses were conducted using "clusterProfiler", while "Cytoscape" was used to construct a "drug-component-target" network. Additionally, data from 60 patients with essential hypertension from the Affiliated Hospital of Shandong University of Traditional Chinese Medicine were retrospectively analyzed. Patients were divided into a control group (n = 30) and an XYM group (n = 30) based on treatment regimen. RESULTS: Sixty active ingredients and 98 related targets were identified from Uncaria, Radix Scrophulariae, and Epimedium in hypertension treatment. Key active components such as quercetin, kaempferol, yohimbine, and beta-sitosterol were pinpointed, with PTGS2, PTGS1, AR, DPP4, and F2 as crucial targets. KEGG pathway analysis highlighted significant pathways including IL-17 signaling, TNF signaling, Relaxin signaling, and HIF-1 signaling. Clinical data indicated that XYM's therapeutic effects are comparable to those of valsartan, which significantly reduced diastolic and systolic blood pressure and demonstrated good biosafety. CONCLUSIONS: Uncaria, Radix Scrophulariae, and Epimedium effectively mitigate hypertension through multiple components, targets, and pathways. Additionally, DPP4, IL-17, and TNF-α are identified as potential therapeutic targets for traditional Chinese medicine preparations in hypertension treatment. This study provides a foundation for further investigation into XYM's mechanisms in hypertension management.

7.
J Org Chem ; 89(16): 11607-11619, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39088274

ABSTRACT

A highly efficient asymmetric [3 + 2] cycloaddition reaction of 2'-hydroxychalcones with N-2,2,2-trifluoroethylisatin ketimines catalyzed by a (R)-3,3'-I2-BINOL-boron complex was developed. A broad range of 3,2'-pyrrolidinyl spirooxindole derivatives bearing a CF3-substituted pyrrolidine moiety with four contiguous stereocenters was prepared in high yields with excellent diastereo- and enantioselectivities (up to >20:1 dr and >99% ee). This protocol had the characteristics of mild reaction conditions, high efficiency, and excellent stereocontrol.

8.
Org Lett ; 26(35): 7291-7296, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39172514

ABSTRACT

A novel photoredox/nickel dual catalytic intermolecular alkylarylation of vinylarenes with tertiary and secondary alkyltrifluoroborates and aryl bromides is described, which affords 1,1-diarylalkane frameworks that are found in various natural products as well as functionalized molecules in good to excellent yield and regioselectivity through a radical relay process. Notably, this redox-neutral reaction could proceed efficiently with good tolerance of various substrates, including a great diversity of commercially available (hetero)aryl bromides, alkyltrifluoroborates, and vinylarenes.

9.
Radiology ; 312(1): e232387, 2024 07.
Article in English | MEDLINE | ID: mdl-39012251

ABSTRACT

Background Preoperative local-regional tumor staging of gastric cancer (GC) is critical for appropriate treatment planning. The comparative accuracy of multiparametric MRI (mpMRI) versus dual-energy CT (DECT) for staging of GC is not known. Purpose To compare the diagnostic accuracy of personalized mpMRI with that of DECT for local-regional T and N staging in patients with GC receiving curative surgical intervention. Materials and Methods Patients with GC who underwent gastric mpMRI and DECT before gastrectomy with lymphadenectomy were eligible for this single-center prospective noninferiority study between November 2021 and September 2022. mpMRI comprised T2-weighted imaging, multiorientational zoomed diffusion-weighted imaging, and extradimensional volumetric interpolated breath-hold examination dynamic contrast-enhanced imaging. Dual-phase DECT images were reconstructed at 40 keV and standard 120 kVp-like images. Using gastrectomy specimens as the reference standard, the diagnostic accuracy of mpMRI and DECT for T and N staging was compared by six radiologists in a pairwise blinded manner. Interreader agreement was assessed using the weighted κ and Kendall W statistics. The McNemar test was used for head-to-head accuracy comparisons between DECT and mpMRI. Results This study included 202 participants (mean age, 62 years ± 11 [SD]; 145 male). The interreader agreement of the six readers for T and N staging of GC was excellent for both mpMRI (κ = 0.89 and 0.85, respectively) and DECT (κ = 0.86 and 0.84, respectively). Regardless of reader experience, higher accuracy was achieved with mpMRI than with DECT for both T (61%-77% vs 50%-64%; all P < .05) and N (54%-68% vs 51%-58%; P = .497-.005) staging, specifically T1 (83% vs 65%) and T4a (78% vs 68%) tumors and N1 (41% vs 24%) and N3 (64% vs 45%) nodules (all P < .05). Conclusion Personalized mpMRI was superior in T staging and noninferior or superior in N staging compared with DECT for patients with GC. Clinical trial registration no. NCT05508126 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Méndez and Martín-Garre in this issue.


Subject(s)
Neoplasm Staging , Stomach Neoplasms , Tomography, X-Ray Computed , Humans , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/pathology , Stomach Neoplasms/surgery , Male , Female , Middle Aged , Prospective Studies , Aged , Tomography, X-Ray Computed/methods , Gastrectomy/methods , Adult , Magnetic Resonance Imaging/methods , Multiparametric Magnetic Resonance Imaging/methods
10.
Bioengineering (Basel) ; 11(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39061786

ABSTRACT

The open reduction of mandibular condyle neck fractures is difficult due to the limited surgical field and complex facial nerve structures. The most effective fixation method for narrow fractured segments is debated as standard double four-hole plate fixation is often not feasible. This research compared bone stability and force resistance between single-long-plate and double-short-plate fixations using clinical outcomes, a Sawbones mandible model, and finite element analysis. In patients with condyle neck fractures, nine were fixed with single-long-plate and twelve with double-short-plate fixations, with no significant differences in malocclusion and facial palsy rates. In compression tests with a Sawbones model, displacements in the posterior part were similar in both fixation groups. In contrast, the anterior part had significantly higher displacements in the single-long-plate group. Finite element analysis showed higher displacements in both anterior and posterior parts in the single-plate group compared to the double-short-plate group. Maximum stresses were at the second screw hole in single-long-plate fixation and the turning point of the upper plate at the condyle neck in double-short-plate fixation. Double-short-plate fixations demonstrated better stability and force resistance than single-long-plate fixations.

11.
J Imaging Inform Med ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954293

ABSTRACT

This study aims to evaluate an AI model designed to automatically classify skull fractures and visualize segmentation on emergent CT scans. The model's goal is to boost diagnostic accuracy, alleviate radiologists' workload, and hasten diagnosis, thereby enhancing patient outcomes. Unique to this research, both pediatric and post-operative patients were not excluded, and diagnostic durations were analyzed. Our testing dataset for the observer studies involved 671 patients, with a mean age of 58.88 years and fairly balanced gender representation. Model 1 of our AI algorithm, trained with 1499 fracture-positive cases, showed a sensitivity of 0.94 and specificity of 0.87, with a DICE score of 0.65. Implementing post-processing rules (specifically Rule B) improved the model's performance, resulting in a sensitivity of 0.94, specificity of 0.99, and a DICE score of 0.63. AI-assisted diagnosis resulted in significantly enhanced performance for all participants, with sensitivity almost doubling for junior radiology residents and other specialists. Additionally, diagnostic durations were significantly reduced (p < 0.01) with AI assistance across all participant categories. Our skull fracture detection model, employing a segmentation approach, demonstrated high performance, enhancing diagnostic accuracy and efficiency for radiologists and clinical physicians. This underlines the potential of AI integration in medical imaging analysis to improve patient care.

12.
Nat Commun ; 15(1): 4985, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862515

ABSTRACT

Hyperglycemia accelerates calcification of atherosclerotic plaques in diabetic patients, and the accumulation of advanced glycation end products (AGEs) is closely related to the atherosclerotic calcification. Here, we show that hyperglycemia-mediated AGEs markedly increase vascular smooth muscle cells (VSMCs) NF90/110 activation in male diabetic patients with atherosclerotic calcified samples. VSMC-specific NF90/110 knockout in male mice decreases obviously AGEs-induced atherosclerotic calcification, along with the inhibitions of VSMC phenotypic changes to osteoblast-like cells, apoptosis, and matrix vesicle release. Mechanistically, AGEs increase the activity of NF90, which then enhances ubiquitination and degradation of AGE receptor 1 (AGER1) by stabilizing the mRNA of E3 ubiquitin ligase FBXW7, thus causing the accumulation of more AGEs and atherosclerotic calcification. Collectively, our study demonstrates the effects of VSMC NF90 in mediating the metabolic imbalance of AGEs to accelerate diabetic atherosclerotic calcification. Therefore, inhibition of VSMC NF90 may be a potential therapeutic target for diabetic atherosclerotic calcification.


Subject(s)
Atherosclerosis , F-Box-WD Repeat-Containing Protein 7 , Glycation End Products, Advanced , Mice, Knockout , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Nuclear Factor 90 Proteins , Receptor for Advanced Glycation End Products , Animals , Male , Mice , Glycation End Products, Advanced/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Humans , F-Box-WD Repeat-Containing Protein 7/metabolism , F-Box-WD Repeat-Containing Protein 7/genetics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Nuclear Factor 90 Proteins/metabolism , Nuclear Factor 90 Proteins/genetics , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Vascular Calcification/metabolism , Vascular Calcification/pathology , Vascular Calcification/genetics , Mice, Inbred C57BL , Ubiquitination , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Hyperglycemia/metabolism , Hyperglycemia/genetics , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/genetics , Apoptosis
13.
ACS Appl Bio Mater ; 7(6): 3587-3604, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38833534

ABSTRACT

Nature continually refines its processes for optimal efficiency, especially within biological systems. This article explores the collaborative efforts of researchers worldwide, aiming to mimic nature's efficiency by developing smarter and more effective nanoscale technologies and biomaterials. Recent advancements highlight progress and prospects in leveraging engineered nucleic acids and proteins for specific tasks, drawing inspiration from natural functions. The focus is developing improved methods for characterizing, understanding, and reprogramming these materials to perform user-defined functions, including personalized therapeutics, targeted drug delivery approaches, engineered scaffolds, and reconfigurable nanodevices. Contributions from academia, government agencies, biotech, and medical settings offer diverse perspectives, promising a comprehensive approach to broad nanobiotechnology objectives. Encompassing topics from mRNA vaccine design to programmable protein-based nanocomputing agents, this work provides insightful perspectives on the trajectory of nanobiotechnology toward a future of enhanced biomimicry and technological innovation.


Subject(s)
Biocompatible Materials , Nanotechnology , Biocompatible Materials/chemistry , Humans , Biotechnology , Drug Delivery Systems
14.
Mol Cancer Ther ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907533

ABSTRACT

M2-like macrophages exhibit immunosuppressive activity and promote pancreatic cancer progression. Reactive oxygen species (ROS) affect macrophage polarization; however, the mechanism remains unclear. This study aimed to elucidate the underlying molecular basis and design a gene therapy to inhibit M2-like polarization. Microarray analysis and IF staining were performed in M1-like and M2-like macrophages to ascertain the expression of CYBB, a major intracellular ROS source. Co-culture assay and syngeneic orthotopic pancreatic cancer mouse models were used to study the mechanism of M2-like skewing. Decoy oligodeoxynucleotides (ODNs) were designed to manipulate CYBB transcription to inhibit M2-like polarization and control tumor growth. Lipopolysaccharide (LPS) treatment polarized U937 cells to M1-like macrophages in which CYBB expression was increased. In contrast, co-culture with PANC-1 cells induced M2-like polarization in U937 cells with CYBB downregulation. High CD204 M2-like expression in combination with low CYBB expression was associated with the worst prognosis in pancreatic cancer patients. STAT6 and HDAC2 in U937 cells were activated by cancer cell-derived IL-4 after coculture and then bound to the CYBB promoter to repress CYBB expression, resulting in M2-like polarization. DPI that inhibits ROS production could block this action. Knockdown of STAT6 and HDAC2 also inhibited M2-like polarization and maintained the M1-like phenotype of U937 cells after coculture. Decoy ODNs interrupting the binding of STAT6 to the CYBB promoter counteracted M2-like polarization and tumor growth and triggered antitumor immunity in vivo. Gene therapy using STAT6-CYBB decoy ODNs can inhibit M2-like polarization, representing a potential therapeutic tool for pancreatic cancer.

15.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 825-830, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38926974

ABSTRACT

OBJECTIVE: To investigate the expression level and clinical correlation of microRNA-144/451 gene cluster (miR-144/451) in different types of anemia. METHODS: The peripheral blood of patients with aplastic anemia (AA), myelodysplastic syndrome (MDS) and diffuse large B-cell lymphoma (DLBCL) who had been diagnosed with anemia for the first time and after chemotherapy were collected. The expression levels of miR-144 and miR-451 were measured by RT-qPCR, and the correlation between the expression levels of miR-144 and miR-451 and routine laboratory indexes was analyzed by Spearman correlation analysis. RESULTS: The expression levels of miR-144 and miR-451 in the peripheral blood of AA and MDS patients were significantly lower than those in normal controls (all P < 0.01). No statistical differences were observed in the expression level of miR-144 in three subgroups of DLBCL patients (P >0.05), while the expression level of miR-451 in peripheral blood of three subgroups of DLBCL patients were significantly higher than those in normal controls (all P < 0.05). Correlation analysis showed that the expression levels of miR-144 and miR-451 in AA patients were positively correlated with red blood cell distribution width-coefficient of variation (RDW-CV) (r =0.629, 0.574). There were no significant correlations between the expression levels of miR-144 and miR-451 and laboratory parameters in MDS and DLBCL patients. CONCLUSION: Different types of anemia disorders have varying levels of miR-144 and miR-451 expression, which is anticipated to develop into a secondary diagnostic and differential diagnostic indicator for clinical anemia diseases.


Subject(s)
MicroRNAs , Myelodysplastic Syndromes , Humans , MicroRNAs/genetics , Myelodysplastic Syndromes/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Anemia, Aplastic/genetics , Anemia , Multigene Family
16.
Eur J Pharmacol ; 977: 176741, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38880221

ABSTRACT

BACKGROUND: Voltage-gated potassium (Kv) channel growth is strongly associated with the development of arrhythmia. Salidroside (Sal), an active component from Rhodiola crenulata, has been shown to exert protective effects against heart disease. The present study was conducted to investigate the effects of Sal on Kv2.1 channel, and to explore the ionic mechanism of anti-arrhythmic. METHODS: In this study, we utilized cisapride (Cis., A stimulant that prolongs the QT interval and causes cardiac arrhythmias) by intravenous injection to establish an arrhythmia model, and detected the effects of Sal on electrocardiography (ECG) and pressure volume loop (P-V loop) in SD rats. The effect of Sal on ECG of citalopram (Cit., a Kv2 channel inhibition)-evoked arrhythmia rat models was further evaluated by monitoring the dynamic changes of multiple indicators of ECG. Then, we detected the effect of Sal on the viability of hypoxic H9c2 cells using CCK-8 assay. After that, the effect of Sal on Kv channel currents (IKv) and Kv2.1 channel currents (IKv2.1) in H9c2 cells under normal and hypoxic conditions was examined using whole-cell patch clamp technique. In addition, the effect of Sal on IKv and IKv2.1 in H9c2 cells was determined under the inhibition of Kv and Kv2.1 channels. HEK293 cells stably transfected with Kv2.1 plasmids were also used to investigate the IKv2.1 changes under Sal pre-treated and co-incubated conditions. In addition, potential interactions of Sal with Kv2.1 protein were predicted and tested by molecular docking, molecular dynamics simulation (MDS), localized surface plasmon resonance (LSPR), and cellular thermal shift assay (CETSA) techniques, respectively. Furthermore, gene and protein levels of Kv2.1 in Sal-treated H9c2 cell were estimated by qRT-PCR, Western blot (WB) and immunofluorescence (IF) analysis. RESULTS: Sal shortened the prolongated QT interval and ameliorated the cardiac impairment associated with arrhythmia in SD rats caused by Cis., as reflected in the ECG and P-V loop data. And Sal was also protective against arrhythmia in rats caused by Kv2 channel inhibition. At the cellular level, Sal increased cell viability after CoCl2-induced hypoxic injury in H9c2 cells. Whole-cell patch clamp assay confirmed that Sal inhibited both IKv and IKv2.1 in normal H9c2 cells, while enhanced IKv and IKv2.1 in cardiomyocytes after hypoxic injury. And Sal enhanced IKv inhibited by 1.5 mM 4-AP and upregulated all inhibition of Kv2 channels induced by 20 mM 4-AP administration, antagonized the IKv2.1 inhibitory effect of Cit. Moreover, Sal pre-administration for 24 h and immediate administration increased IKv2.1 in HEK293 cells stably transfected with Kv2.1 plasmids. Molecular docking demonstrated the potential binding of Sal to the Kv2.1 protein, with calculated binding energy of -5.4 kcal/mol. MDS test illustrated that the average hydrogen bonding of the Sal-Kv2.1 complexes was 30.89%. LSPR results verified the potential binding of Sal to Kv2.1 protein with an affinity value of 9.95 × 10-4 M. CETSA assay confirmed Sal can enhance the expression of Kv2.1 protein in H9c2 cells treated with heat, which suggests that Sal may bind to Kv2.1 protein. The results of WB, qRT-PCR, and IF further argued that Sal pre-administration for 24 h enhanced the levels of the Kv2.1 gene and protein (with no effects on the Kv2.1 gene and protein for H9c2 cells co-incubated with Sal for 6 h and 12 h). CONCLUSION: Overall, our findings indicate that Sal can resist drug-induced arrhythmias in SD rats, partially by modulating repolarization through stimulating Kv2.1.


Subject(s)
Glucosides , Phenols , Rats, Sprague-Dawley , Shab Potassium Channels , Animals , Shab Potassium Channels/metabolism , Shab Potassium Channels/genetics , Phenols/pharmacology , Rats , Glucosides/pharmacology , Male , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/prevention & control , Arrhythmias, Cardiac/chemically induced , Cell Line , Molecular Docking Simulation , Humans , Anti-Arrhythmia Agents/pharmacology , HEK293 Cells , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Electrocardiography/drug effects , Cell Survival/drug effects , Action Potentials/drug effects
17.
Front Microbiol ; 15: 1415100, 2024.
Article in English | MEDLINE | ID: mdl-38933027

ABSTRACT

Interpretation of the genetic code from triplets of nucleotides to amino acids is fundamental to life. This interpretation is achieved by cellular tRNAs, each reading a triplet codon through its complementary anticodon (positions 34-36) while delivering the amino acid charged to its 3'-end. This amino acid is then incorporated into the growing polypeptide chain during protein synthesis on the ribosome. The quality and versatility of the interpretation is ensured not only by the codon-anticodon pairing, but also by the post-transcriptional modifications at positions 34 and 37 of each tRNA, corresponding to the wobble nucleotide at the first position of the anticodon and the nucleotide on the 3'-side of the anticodon, respectively. How each codon is read by the matching anticodon, and which modifications are required, cannot be readily predicted from the codon-anticodon pairing alone. Here we provide an easily accessible modification pattern that is integrated into the genetic code table. We focus on the Gram-negative bacterium Escherichia coli as a model, which is one of the few organisms whose entire set of tRNA modifications and modification genes is identified and mapped. This work provides an important reference tool that will facilitate research in protein synthesis, which is at the core of the cellular life.

18.
ACS Nano ; 18(26): 17240-17250, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38906834

ABSTRACT

This study investigates transfer ribonucleic acid (tRNA) conformational dynamics in the context of MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) using solid-state silicon nitride (SiN) nanopore technology. SiN nanopores in thin membranes with specific dimensions exhibit high signal resolution, enabling real-time and single-molecule electronic detection of tRNA conformational changes. We focus on human mitochondrial tRNALeu(UAA) (mt-Leu(UAA)) that decodes Leu codons UUA/UUG (UUR) during protein synthesis on the mt-ribosome. The single A14G substitution in mt-Leu(UAA) is the major cause of MELAS disease. Measurements of current blockades and dwell times reveal distinct conformational dynamics of the wild-type (WT) and the A14G variant of mt-Leu(UAA) in response to the conserved post-transcriptional m1G9 methylation. While the m1G9-modified WT transcript adopts a more stable structure relative to the unmodified transcript, the m1G9-modified MELAS transcript adopts a less stable structure relative to the unmodified transcript. Notably, these differential features were observed at 0.4 M KCl, but not at 3 M KCl, highlighting the importance of experimental settings that are closer to physiological conditions. This work demonstrates the feasibility of the nanopore platform to discern tRNA molecules that differ by a single-nucleotide substitution or by a single methylation event, providing an important step forward to explore changes in the conformational dynamics of other RNA molecules in human diseases.


Subject(s)
MELAS Syndrome , Nanopores , Nucleic Acid Conformation , MELAS Syndrome/genetics , Humans , RNA, Transfer/genetics , RNA, Transfer/chemistry , RNA/chemistry , RNA/genetics
19.
BMJ ; 385: e077890, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38897625

ABSTRACT

OBJECTIVE: To compare the effectiveness and safety of nab-paclitaxel, cisplatin, and capecitabine (nab-TPC) with gemcitabine and cisplatin as an alternative first line treatment option for recurrent or metastatic nasopharyngeal carcinoma. DESIGN: Phase 3, open label, multicentre, randomised trial. SETTING: Four hospitals located in China between September 2019 and August 2022. PARTICIPANTS: Adults (≥18 years) with recurrent or metastatic nasopharyngeal carcinoma. INTERVENTIONS: Patients were randomised in a 1:1 ratio to treatment with either nab-paclitaxel (200 g/m2 on day 1), cisplatin (60 mg/m2 on day 1), and capecitabine (1000 mg/m2 twice on days 1-14) or gemcitabine (1 g/m2 on days 1 and 8) and cisplatin (80 mg/m2 on day 1). MAIN OUTCOME MEASURES: Progression-free survival was evaluated by the independent review committee as the primary endpoint in the intention-to-treat population. RESULTS: The median follow-up was 15.8 months in the prespecified interim analysis (31 October 2022). As assessed by the independent review committee, the median progression-free survival was 11.3 (95% confidence interval 9.7 to 12.9) months in the nab-TPC cohort compared with 7.7 (6.5 to 9.0) months in the gemcitabine and cisplatin cohort. The hazard ratio was 0.43 (95% confidence interval 0.25 to 0.73; P=0.002). The objective response rate in the nab-TPC cohort was 83% (34/41) versus 63% (25/40) in the gemcitabine and cisplatin cohort (P=0.05), and the duration of response was 10.8 months in the nab-TPC cohort compared with 6.9 months in the gemcitabine and cisplatin cohort (P=0.009). Treatment related grade 3 or 4 adverse events, including leukopenia (4/41 (10%) v 13/40 (33%); P=0.02), neutropenia (6/41 (15%) v 16/40 (40%); P=0.01), and anaemia (1/41 (2%) v 8/40 (20%); P=0.01), were higher in the gemcitabine and cisplatin cohort than in the nab-TPC cohort. No deaths related to treatment occurred in either treatment group. Survival and long term toxicity are still being evaluated with longer follow-up. CONCLUSION: The nab-TPC regimen showed a superior antitumoural efficacy and favourable safety profile compared with gemcitabine and cisplatin for recurrent or metastatic nasopharyngeal carcinoma. Nab-TPC should be considered the standard first line treatment for recurrent or metastatic nasopharyngeal carcinoma. Longer follow-up is needed to confirm the benefits for overall survival. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR1900027112.


Subject(s)
Albumins , Antineoplastic Combined Chemotherapy Protocols , Capecitabine , Cisplatin , Deoxycytidine , Gemcitabine , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Neoplasm Recurrence, Local , Paclitaxel , Humans , Cisplatin/administration & dosage , Cisplatin/therapeutic use , Cisplatin/adverse effects , Male , Middle Aged , Female , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/mortality , Deoxycytidine/analogs & derivatives , Deoxycytidine/administration & dosage , Deoxycytidine/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Capecitabine/therapeutic use , Capecitabine/administration & dosage , Adult , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/mortality , Neoplasm Recurrence, Local/drug therapy , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Paclitaxel/adverse effects , Albumins/administration & dosage , Albumins/adverse effects , Albumins/therapeutic use , Aged , Progression-Free Survival , China , Neoplasm Metastasis
20.
Heliyon ; 10(10): e31187, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803872

ABSTRACT

Objectives: The early prediction of death is a challenge for medical staff. We evaluated the ability of the heart/breathing rate ratio (HBR) to predict mortality. Methods: This was a single-center retrospective observational study of adult patients who had fever with or without respiratory symptoms, who survived at least 2 h after visiting the hospital, and whose lactate levels and vital signs were tested. We evaluated the distribution of mortality at different HBR levels and compared HBR with lactate. Results: A total of 18,872 fever clinic visits were screened, and 183 patients whose lactate levels were tested were recruited. Patients who had HBR values lower than 4·5 or higher than 5·5 had greater mortality than patients who had HBR values between 4·5 and 5·5 (21·3 % vs. 3·4 %, p = 0·003; 28·9 % vs. 3·4 %, p < 0·001, respectively). In patients whose HBR was <5, the AUROC for HBR for mortality was 0·762 (95 % CI: 0.643-0·880), and that for lactate was 0·701 (95 % CI: 0·564-0·837). In patients whose HBR was ≥5, the AUROC for HBR for mortality was 0·721 (95 % CI: 0·584-0·857), and that for lactate was 0·742 (95 % CI: 0·607-0·848). Conclusions: HBR is helpful for stratifying mortality risk among critically ill patients in acute care clinics for infectious diseases.

SELECTION OF CITATIONS
SEARCH DETAIL