Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 33(5): 1260-1266, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35730084

ABSTRACT

Under the changing climate scenario, changes in precipitation regimes are expected to alter soil water and salinity conditions, with consequences on the characteristics of plant community in estuarine wetland. Here, we used a six-year (2015-2020) precipitation manipulation experiment to examine how plant community characteristics responded to precipitation changes in the Yellow River Delta. The results showed that soil electrical conductivity significantly decreased, while soil moisture significantly increased with increasing precipitation. Precipitation changes altered plant community composition. Increased precipitation reduced the absolute dominance of Suaeda glauca and Suaeda salsa, but increased that of Triarrhena sacchariflora and Imperata cylindrica. Shannon index and Margalef richness index of plant community significantly increased with increasing precipitation. Compared with the control, both decreased and increased precipitation decreased the plant community abundance, frequency and coverage. The treatment of 60% increased precipitation significantly decreased plant community frequency by 54.9%, while the 60% decreased precipitation, 40% decreased precipitation, 40% increased precipitation and 60% increased precipitation treatment significantly decreased plant abundance by 38.9%, 33.8%, 35.8% and 45.7%, respectively. The aboveground biomass significantly increased with increasing precipitation, but aboveground plant biomass under 60% increased precipitation treatment being lower than that reducing under 40% increased precipitation treatment, probably due to the negative effects of flooding stress. In addition, Margalef richness index had a significantly positive relationship with aboveground biomass. Aboveground biomass, Shannon diversity index, Margalef richness index, and Simpson diversity index were negatively related to soil electrical conductivity, and aboveground plant biomass was positively related to soil moisture. Our results revealed that precipitation changes regulate growth characteristics, species composition, and diversity of plant community by altering soil water and salinity conditions in a coastal wetland.


Subject(s)
Chenopodiaceae , Wetlands , Biomass , China , Plants , Poaceae/physiology , Rivers , Soil , Water
2.
Theor Appl Genet ; 122(8): 1489-96, 2011 May.
Article in English | MEDLINE | ID: mdl-21327937

ABSTRACT

Stunted lemma palea 1 (slp1) is a rice mutant that displays dwarfism, shortened inflorescence lengths, severely degenerated lemmas/paleas, and sterility. The SLP1 locus was mapped between markers RM447 and D275 in the distal region of the long arm of chromosome 8, using the F2 progeny derived from the cross between the Slp1/slp1 mutant (Oryza sativa subsp. japonica) and the variety Taichung Native 1 (TN1, O. sativa subsp. indica). The SLP1 locus was further delimited to a 46.4-kb genomic region containing three putative genes: OsSPL16, OsMADS45, and OsMADS37. Comparisons of the sequence variations and expression levels of the three candidate genes between wild-type plants and homozygous slp1 mutants suggested that a missense mutation in the sixth amino acid of the OsSPL16 protein was likely responsible for the slp1 mutant phenotypes.


Subject(s)
Chromosome Mapping , Flowers/growth & development , Genes, Plant/genetics , Oryza/genetics , Phenotype , Base Sequence , Crosses, Genetic , DNA Primers/genetics , Molecular Sequence Data , Mutation, Missense/genetics , Oryza/growth & development , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...