Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Abdom Radiol (NY) ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662208

ABSTRACT

PURPOSE: The purpose of our study is to investigate image quality, efficiency, and diagnostic performance of a deep learning-accelerated single-shot breath-hold (DLSB) against BLADE for T2-weighted MR imaging (T2WI) for gastric cancer (GC). METHODS: 112 patients with GCs undergoing gastric MRI were prospectively enrolled between Aug 2022 and Dec 2022. Axial DLSB-T2WI and BLADE-T2WI of stomach were scanned with same spatial resolution. Three radiologists independently evaluated the image qualities using a 5-scale Likert scales (IQS) in terms of lesion delineation, gastric wall boundary conspicuity, and overall image quality. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated in measurable lesions. T staging was conducted based on the results of both sequences for GC patients with gastrectomy. Pairwise comparisons between DLSB-T2WI and BLADE-T2WI were performed using the Wilcoxon signed-rank test, paired t-test, and chi-squared test. Kendall's W, Fleiss' Kappa, and intraclass correlation coefficient values were used to determine inter-reader reliability. RESULTS: Against BLADE, DLSB reduced total acquisition time of T2WI from 495 min (mean 4:42 per patient) to 33.6 min (18 s per patient), with better overall image quality that produced 9.43-fold, 8.00-fold, and 18.31-fold IQS upgrading against BALDE, respectively, in three readers. In 69 measurable lesions, DLSB-T2WI had higher mean SNR and higher CNR than BLADE-T2WI. Among 71 patients with gastrectomy, DLSB-T2WI resulted in comparable accuracy to BLADE-T2WI in staging GCs (P > 0.05). CONCLUSIONS: DLSB-T2WI demonstrated shorter acquisition time, better image quality, and comparable staging accuracy, which could be an alternative to BLADE-T2WI for gastric cancer imaging.

2.
Neural Regen Res ; 19(8): 1741-1750, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38103240

ABSTRACT

Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms. This process plays a crucial role in modulating homeostasis and is evolutionarily conserved across a diverse range of living organisms. Ferroptosis is a classic regulatory mode of cell death. Extensive studies of regulatory cell death in Alzheimer's disease have yielded increasing evidence that ferroptosis is closely related to the occurrence, development, and prognosis of Alzheimer's disease. This review summarizes the molecular mechanisms of ferroptosis and recent research advances in the role of ferroptosis in Alzheimer's disease. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for Alzheimer's disease.

3.
ACS Chem Neurosci ; 14(19): 3564-3587, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37703318

ABSTRACT

Alzheimer's disease (AD), the most common type of dementia, is a neurodegenerative disorder characterized by progressive cognitive dysfunction. Epidemiological investigation has demonstrated that, after cardiovascular and cerebrovascular diseases, tumors, and other causes, AD has become a major health issue affecting elderly individuals, with its mortality rate acutely increasing each year. Regulatory cell death is the active and orderly death of genetically determined cells, which is ubiquitous in the development of living organisms and is crucial to the regulation of life homeostasis. With extensive research on regulatory cell death in AD, increasing evidence has revealed that ferroptosis, pyroptosis, and cuproptosis are closely related to the occurrence, development, and prognosis of AD. This paper will review the molecular mechanisms of ferroptosis, pyroptosis, and cuproptosis and their regulatory roles in AD to explore potential therapeutic targets for the treatment of AD.

4.
ACS Appl Mater Interfaces ; 15(37): 43479-43491, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37694454

ABSTRACT

Integration of clinical imaging and collaborative multimodal therapies into a single nanomaterial for multipurpose diagnosis and treatment is of great interest to theranostic nanomedicine. Here, we report a rational design of a discrete Os-based metal-organic nanocage Pd6(OsL3)828+ (MOC-43) as a versatile theranostic nanoplatform to meet the following demands simultaneously: (1) synergistic treatments of radio-, chemo-, and X-ray-induced photodynamic therapies (X-PDT) for breast cancer, (2) NIR imaging for cancer cell tracking and tumor-targeting, and (3) anticancer drug transport through a host-guest strategy. The nanoscale MOC-43 incorporates high-Z Os-element to interact with X-ray irradiation for dual radiosensitization and photosensitization, showing efficient energy transfer to endogenous oxygen in cancer cells to enhance X-PDT efficacy. It also features intrinsic NIR emission originating from metal-to-ligand charge transfer (MLCT) as an excellent imaging probe. Meanwhile, its 12 pockets can capture and concentrate low-water-soluble molecules for anticancer drug delivery. These multifunctions are implemented and demonstrated by micellization of coumarin-loaded cages with DSPE-PEG2000 into coumarin ⊂ MOC-43 nanoparticles (CMNPs) for efficient subcellular endocytosis and uptake. The cancer treatments in vitro/in vivo show promising antitumor performance, providing a conceptual protocol to combine cage-cargo drug transport with diagnosis and treatment for collaborative cancer theranostics by virtue of multifunction synergism on a single-nanomaterial platform.


Subject(s)
Antineoplastic Agents , Photochemotherapy , X-Rays , Drug Delivery Systems , Coumarins
5.
Int J Biol Macromol ; 251: 126374, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37595709

ABSTRACT

As an environmentally friendly lignocellulosic biomass separation technology, hydrothermal pretreatment (HP) has a strong application prospect. However, the low separation efficiency is a main factor limiting its application. In this study, the poplar components were separated using HP with ferric chloride and pH buffer (HFB). The optimal conditions were ferric chloride concentration of 0.10 M, reaction temperature of 150 °C, reaction time of 15 min and pH 1.9. The separation of hemicellulose was increased 34.03 % to 77.02 %. The pH buffering resulted in the highest cellulose and lignin retention yields compared to ferric chloride pretreatment (FC). The high efficiency separation of hemicellulose via HFB pretreatment inhibited the degradation of xylose. The hydrolysate was effectively reused for five times. The fiber crystallinity index reached 60.05 %, and the highest C/O ratio was obtained. The results provide theoretical support for improving the efficiency of HP and promoting its application.

6.
Adv Sci (Weinh) ; 10(26): e2302123, 2023 09.
Article in English | MEDLINE | ID: mdl-37449329

ABSTRACT

Cardiovascular disease is the leading cause of death worldwide. Reperfusion therapy is vital to patient survival after a heart attack but can cause myocardial ischemia/reperfusion injury (MI/RI). Nitric oxide (NO) can ameliorate MI/RI and is a key molecule for drug development. However, reactive oxygen species (ROS) can easily oxidize NO to peroxynitrite, which causes secondary cardiomyocyte damage. Herein, L-arginine-loaded selenium-coated gold nanocages (AAS) are designed, synthesized, and modified with PCM (WLSEAGPVVTVRALRGTGSW) to obtain AASP, which targets cardiomyocytes, exhibits increased cellular uptake, and improves photoacoustic imaging in vitro and in vivo. AASP significantly inhibits oxygen glucose deprivation/reoxygenation (OGD/R)-induced H9C2 cell cytotoxicity and apoptosis. Mechanistic investigation revealed that AASP improves mitochondrial membrane potential (MMP), restores ATP synthase activity, blocks ROS generation, and prevents NO oxidation, and NO blocks ROS release by regulating the closing of the mitochondrial permeability transition pore (mPTP). AASP administration in vivo improves myocardial function, inhibits myocardial apoptosis and fibrosis, and ultimately attenuates MI/RI in rats by maintaining mitochondrial function and regulating NO signaling. AASP shows good safety and biocompatibility in vivo. This findings confirm the rational design of AASP, which can provide effective treatment for MI/RI.


Subject(s)
Myocardial Reperfusion Injury , Rats , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Nitric Oxide/metabolism , Reactive Oxygen Species/therapeutic use , Gold , Arginine/metabolism , Mitochondria/metabolism
7.
Int J Mol Sci ; 24(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37298162

ABSTRACT

The use of fertilizer is closely related to crop growth and environmental protection in agricultural production. It is of great significance to develop environmentally friendly and biodegradable bio-based slow-release fertilizers. In this work, porous hemicellulose-based hydrogels were created, which had excellent mechanical properties, water retention properties (the water retention ratio in soil was 93.8% after 5 d), antioxidant properties (76.76%), and UV resistance (92.2%). This improves the efficiency and potential of its application in soil. In addition, electrostatic interaction and coating with sodium alginate produced a stable core-shell structure. The slow release of urea was realized. The cumulative release ratio of urea after 12 h was 27.42% and 11.38%, and the release kinetic constants were 0.0973 and 0.0288, in aqueous solution and soil, respectively. The sustained release results demonstrated that urea diffusion in aqueous solution followed the Korsmeyer-Peppas model, indicating the Fick diffusion mechanism, whereas diffusion in soil adhered to the Higuchi model. The outcomes show that urea release ratio may be successfully slowed down by hemicellulose hydrogels with high water retention ability. This provides a new method for the application of lignocellulosic biomass in agricultural slow-release fertilizer.


Subject(s)
Fertilizers , Hydrogels , Hydrogels/chemistry , Fertilizers/analysis , Urea/chemistry , Soil/chemistry , Water/chemistry
8.
J Fungi (Basel) ; 9(5)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37233248

ABSTRACT

Species of Cystolepiota are known as diminutive lepiotaceous fungi with a worldwide distribution. Previous studies revealed that Cystolepiota is not monophyletic and preliminary DNA sequence data from recent collections suggested that several new species exist. Based on multi-locus DNA sequence data (the nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2, ITS; the D1-D2 domains of nuc 28S rDNA, LSU; the most variable region of the second-largest subunit of RNA polymerase II, rpb2 and a portion of the translation-elongation factor 1-α. tef1), C. sect. Pulverolepiota forms a distinct clade separating from Cystolepiota. Therefore, the genus Pulverolepiota was resurrected and two combinations, P. oliveirae and P. petasiformis were proposed. With the integration of morphological characteristics, multi-locus phylogeny, and information on geography and habitat, two new species, viz. C. pseudoseminuda and C. pyramidosquamulosa, are described and C. seminuda was revealed to be a species complex containing at least three species, viz. C. seminuda, C. pseudoseminuda, and Melanophyllum eryei. In addition, C. seminuda was re-circumscribed and neo-typified based on recent collections.

9.
Ultrason Sonochem ; 95: 106383, 2023 May.
Article in English | MEDLINE | ID: mdl-37004413

ABSTRACT

Pericarpium Citri Reticulatae 'Chachiensis' (PCRC), the premium aged pericarps of Pericarpium Citri Reticulatae, is widely used in traditional Chinese medicines with a diversity of promising bioactivity. Herein we report the extraction, characterization and underlying mechanism of anti-metabolic syndrome of an arabinan-rich polysaccharide from PCRC (PCRCP). This polysaccharide was obtained in a 7.0% yield by using ultrasound-assisted extraction under the optimized conditions of 30 mL/g liquid-to-solid ratio, 250 W ultrasound power for 20 min at 90 °C with pH 4.5. The PCRCP with an average molecular weight of 122.0 kDa, is mainly composed of D-galacturonic acid, arabinose and galactose, which may link via 1,4-linked Gal(p)-UA, 1,4-linked Ara(f) and 1,4-linked Gal(p). Supplementation with PCRCP not only effectively alleviated the weight gain, adiposity and hyperglycemia, but also regulated the key metabolic pathways involved in the de novo synthesis and ß-oxidation of fatty acid in high-fat diet (HFD)-fed mice. Furthermore, PCRCP treatment caused a significant normalization in the intestinal barrier and composition of gut microbiota in mice fed by HFD. Notably, PCRCP selectively enriched Lactobacillus johnsonii at the family-genus-species levels, a known commensal bacterium, the level of which was decreased in mice fed by HFD. The depletion of microbiome induced by antibiotics, significantly compromised the effects of anti-metabolic syndrome of PCRCP in mice fed by HFD, demonstrating that the protective phenotype of PCRCP against anti-obesity is dependent on gut microbiota. PCRCP is exploitable as a potential prebiotic for the intervention of obesity and its complications.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Mice , Animals , Ultrasonics , Medicine, Chinese Traditional , Obesity/drug therapy , Mice, Inbred C57BL
10.
Nutrients ; 16(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38201888

ABSTRACT

Diets() rich in fat are a major() cause() of metabolic disease(), and nutritional() food has been widely() used() to counteract the metabolic disorders such() as obesity() and fatty() liver(). The present study investigated the effects of oleuropein-enriched extract() from Jasminum grandiflorum L. flowers (OLE-JGF) in high-fat diet() (HFD)-fed mice and oleic acid() (OA)-treated AML-12 cells. Treatment() of HFD-fed mice with 0.6% OLE-JGF for 8 weeks significantly reduced body and liver() weights, as well as attenuating lipid dysmetabolism and hepatic steatosis. OLE-JGF administration() prominently suppressed the mRNA expressions() of monocyte chemoattractant protein()-1 (MCP-1) and cluster of differentiation 68 (CD68), and it also downregulated acetyl-CoA carboxylase (ACC) and fatty() acid() synthase (FAS) as well as sterol-regulatory-element()-binding protein() (SREBP-1c) in the liver(). Meanwhile, mitochondrial DNA and uncoupling protein() 2 (UCP2) were upregulated along with the increased expression() of mitochondrial biogenic promoters including liver() kinase B1 (LKB1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear() factor()-erythroid-derived 2-like 2 (Nrf2), and mitochondrial transcription factor() A (Tfam), but did not change AMP-activated protein() kinase (AMPK) in liver(). The lipid droplets were decreased significantly after treatment() with 80 µM oleuropein for 24 h in OA-induced AML-12 cells. Furthermore, oleuropein significantly inhibited ACC mRNA expression() and upregulated LKB1, PGC-1α, and Tfam mRNA levels, as well as increasing the binding level of LKB1 to PGC-1α promoter in OA-induced cells. These findings indicate() that OLE-JGF reduces hepatic lipid deposition in HFD-fed mice, as well as the fact that OA-induced liver() cells may be partly() attributed to upregulation of the LKB1-PGC-1α axis, which mediates hepatic lipogenesis and mitochondrial biogenesis. Our study provides a scientific() basis() for the benefits and potential() use() of the J. grandiflorum flower as a food supplement() for the prevention() and treatment() of metabolic disease().


Subject(s)
Carcinoma, Hepatocellular , Fatty Liver , Iridoid Glucosides , Jasminum , Leukemia, Myeloid, Acute , Liver Neoplasms , Metabolic Diseases , Animals , Mice , Protein Serine-Threonine Kinases , Fatty Liver/drug therapy , AMP-Activated Protein Kinases/genetics , Acetyl-CoA Carboxylase , RNA, Messenger , Plant Extracts/pharmacology , Lipids
11.
ACS Nano ; 16(11): 18667-18681, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36264835

ABSTRACT

Mitochondrial dysfunction and oxidative damage represent important pathological mechanisms of myocardial ischemia-reperfusion injury (MI/RI). Searching for potential antioxidant agents to attenuate MI/RI is of great significance in clinic. Herein, gold-selenium core-shell nanostructures (AS-I/S NCs) with good near-infrared (NIR)-II photoacoustic imaging were designed for MI/RI treatment. The AS-I/S NCs after ischemic myocardium-targeted peptide (IMTP) and mitochondrial-targeted antioxidant peptide SS31 modification achieved cardiomyocytes-targeted cellular uptake and enhanced antioxidant ability and significantly inhibited oxygen-glucose deprivation-recovery (OGD/R)-induced cardiotoxicity of H9c2 cells by inhibiting the depletion of mitochondrial membrane potential (MMP) and restoring ATP synthase activity. Furthermore, the AS-I/S NCs after SS31 modification achieved mitochondria-targeted inhibition of reactive oxygen species (ROS) and subsequently attenuated oxidative damage in OGD/R-treated H9c2 cells by inhibition of apoptosis and oxidative damage, regulation of MAPKs and PI3K/AKT pathways. The in vivo AS-I/S NCs administration dramatically improved myocardial functions and angiogenesis and inhibited myocardial fibrosis through inhibiting myocardial apoptosis and oxidative damage in MI/RI of rats. Importantly, the AS-I/S NCs showed good safety and biocompatibility in vivo. Therefore, our findings validated the rational design that mitochondria-targeted selenium-gold nanocomposites could attenuate MI/RI of rats by inhibiting ROS-mediated oxidative damage and regulating MAPKs and PI3K/AKT pathways, which could be a potential therapy for the MI/RI treatment.


Subject(s)
Myocardial Reperfusion Injury , Nanocomposites , Photoacoustic Techniques , Selenium , Rats , Animals , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Selenium/pharmacology , Selenium/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Antioxidants/metabolism , Gold/pharmacology , Gold/metabolism , Myocardial Reperfusion Injury/diagnostic imaging , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Apoptosis , Oxidative Stress
12.
Article in English | MEDLINE | ID: mdl-36288457

ABSTRACT

Hydrogen-bonded organic frameworks (HOFs) with multiple functions and permanent pores have received widespread attention due to their potential applications in gas adsorption/separation, drug delivery, photocatalysis, proton conduction, and other fields. Herein, we constructed a three-dimensional (3D) HOF with 1D square channels by utilizing a dual-functional tetrazolyl porphyrin ligand bearing an active center of the porphyrin core and open sites of nitrogen atoms through π-π stacking and hydrogen-bonding interaction self-assembly. The structure exhibits both solvent resistance and thermal stability, and especially, maintains these after being transformed into nanoparticles. Meanwhile, the active sites exposed on the inner wall of the pores can interact well with the photoactive cationic dye molecules to form an effective host-guest (H-G) system, which can realize boosted photosensitized singlet oxygen (1O2) production under red light irradiation and synergistic sterilization toward Staphylococcus aureus (S. aureus) with an inhibition ratio as high as 99.9%. This work provides a valuable design concept for HOF-related systems in pursuit of promoted photoactivity.

13.
Biomed Pharmacother ; 153: 113502, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076591

ABSTRACT

NT157, a small-molecule tyrosine kinase inhibitor, exhibits broad-spectrum anti-tumor activity. However, NT157-mediated inhibition against glioma has not been explored yet. Herein, the anticancer effects and underlying mechanism of NT157 against human giloma growth were evaluated. The results showed that NT157 alone significantly inhibited glioma cells growth in vitro by lunching cell cycle arrest through up-regulating p21 and p27, and down-regulating cell cycle-related factors. NT157 alone also induced significant glioma cells apoptosis, followed by PARP cleavage and caspase-3 activation. Our findings further revealed that NT157 triggered significant DNA damage and dysfunction of PI3K/AKT, MAPKs and EGFR-STAT3 signaling pathways. Addition of several kinases inhibitors effectively abrogated NT157-induced DR5 up-regulation, which further confirmed the significant role of DR5 pathway. Moreover, combined treatment of NT157 and TRAIL showed enhanced apoptosis against U251 and U87 cells. However, Knockdown of DR5 expression significantly attenuated combined treatment-induced PARP cleavage and caspase-3 activation. Importantly, combined administration of NT157 and TRAIL in vivo effectively inhibited glioma xenograft growth of nude mice by inhibiting cell proliferation and angiogenesis, and inducing DNA damage and apoptosis. Taken together, our findings validated the rational design that combined strategy of NT157 and TRAIL to trigger DNA damage and apoptosis by up-regulating DR5 could be a high efficient way to combat human glioma.


Subject(s)
Apoptosis , Glioma , Receptors, TNF-Related Apoptosis-Inducing Ligand , TNF-Related Apoptosis-Inducing Ligand , Animals , Apoptosis/drug effects , Caspase 3 , Cell Line, Tumor , Cell Proliferation/drug effects , Glioma/metabolism , Glioma/pathology , Humans , Mice , Mice, Nude , Phosphatidylinositol 3-Kinases , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Pyrogallol/analogs & derivatives , Pyrogallol/pharmacology , Receptors, TNF-Related Apoptosis-Inducing Ligand/drug effects , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Sulfonamides/pharmacology , TNF-Related Apoptosis-Inducing Ligand/drug effects , TNF-Related Apoptosis-Inducing Ligand/metabolism
14.
J Pharm Anal ; 12(2): 293-300, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35582395

ABSTRACT

A rapid and sensitive method for analyzing trace ß-blockers in complex biological samples, which involved magnetic solid-phase extraction (MSPE) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), was developed. Novel nanosilver-functionalized magnetic nanoparticles with an interlayer of poly(3,4-dihydroxyphenylalanine) (polyDOPA@Ag-MNPs) were synthesized and used as MSPE adsorbents to extract trace ß-blockers from biological samples. After extraction, the analytes loaded on the polyDOPA@Ag-MNPs were desorbed using an organic solvent and analyzed by FTICR-MS. The method was rapid and sensitive, with a total detection procedure of less than 10 min as well as limits of detection and quantification in the ranges of 3.5-6.8 pg/mL and 11.7-22.8 pg/mL, respectively. The accuracy of the method was also desirable, with recoveries ranging from 80.9% to 91.0% following the detection of analytes in human blood samples. All the experimental results demonstrated that the developed MSPE-FTICR-MS method was suitable for the rapid and sensitive analysis of trace ß-blockers in complex biological samples.

15.
Bioresour Technol ; 355: 127304, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35562023

ABSTRACT

Aromatic and hydroxyl acid treatments demonstrate their respective characteristics for the separation of lignocellulosic biomass. In this study, the effect of salicylic acid (SA-A) treatment on the separation of eucalyptus components with both aromatic and hydroxyl acid properties was analyzed. The optimal conditions were SA-A concentration 9.0%, reaction temperature 140 °C and time 75 min. The separation yield of xylose was 85.93%. The separation of cellulose and lignin was inhibited by SA-A treatment in contrast to the separation by glycolic acid and p-toluenesulfonic acid treatment. Moreover, SA-A treatment resulted in a larger fiber crystallinity index and higher thermal stability. The SA-A-treated samples contained lignin that was rich in ß-O-4 and hydroxyl groups. The degradation and condensation of lignin was inhibited. The selectivity of aromatic acids for separating hemicellulose and protecting the lignin structure using hydroxy acids was demonstrated. Thus, new and efficient organic acid treatments can be developed.


Subject(s)
Eucalyptus , Acids , Biomass , Eucalyptus/chemistry , Hydroxy Acids , Lignin/chemistry , Polysaccharides , Salicylic Acid
16.
Bioresour Technol ; 348: 126793, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35121097

ABSTRACT

Hemicelluloses were effectively separated using p-toluenesulfonic acid (p-TsOH) treatment at high temperature. High temperature and pressure promoted hydrolysis of hemicellulose, which limited its value upon recovery. In this study, bagasse hemicellulose was separated and extracted by p-TsOH treatment at atmospheric pressure. The effects of temperature, p-TsOH concentration, and time on hemicellulose separation and extraction were investigated. The optimal conditions were 80 °C, 3.0% p-TsOH, and 120 min. The separation and extraction yield of hemicellulose was 73.23% and 36.02%, respectively. Extraction hemicellulose with 95.60% purity was obtained. In addition, the dissolution mechanism of hemicellulose was analyzed. Degradation of ß-glycosidic bonds was inhibited. Benzyl ether bond between carbohydrates and lignin was selectively cleaved. The skeleton structure of xylan in hemicellulose was protected while the functional groups of branch chain were severely damaged. It provides a valuable theoretical basis for the efficient separation and extraction of hemicellulose.


Subject(s)
Lignin , Polysaccharides , Atmospheric Pressure , Benzenesulfonates , Hydrolysis , Lignin/chemistry , Polysaccharides/chemistry , Temperature
17.
Bioresour Technol ; 341: 125757, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34411942

ABSTRACT

Glycolic acid has chemical properties similar to those of formic acid. Therefore, similar to formic acid pretreatment, glycolic acid pretreatment has the separation effect of hemicellulose. In this study, eucalyptus hemicellulose was effectively separated by glycolic acid pretreatment. The effects of glycolic acid concentration, temperature and time on the separation of cellulose, hemicellulose and lignin were investigated. The optimum conditions were acid concentration 5.40%, temperature 140 °C, time 3.0 h. The highest yield of xylose was 56.72%. The recovery rate of glycolic acid was 91%. Compared to formic acid, the yield of xylose increased to 10.33% while that of lignin decreased to 11.08%. It showed high selectivity for hemicellulose separation, yielding 65.48% hemicellulose with 72.08% purity. The depolymerization and repolymerization of lignin were inhibited. The integrity of the cellulose structure was preserved. It provides theoretical support for the fractional separation and high-value transformation of lignocellulosic biomass.


Subject(s)
Eucalyptus , Biomass , Glycolates , Hydrolysis , Lignin , Polysaccharides
18.
Transl Stroke Res ; 12(6): 1067-1080, 2021 12.
Article in English | MEDLINE | ID: mdl-33713028

ABSTRACT

Excessive glutamate leading to excitotoxicity worsens brain damage after SAH and contributes to long-term neurological deficits. The drug ifenprodil is a non-competitive antagonist of GluN1-GluN2B N-methyl-d-aspartate (NMDA) receptor, which mediates excitotoxic damage in vitro and in vivo. Here, we show that cerebrospinal fluid (CSF) glutamate level within 48 h was significantly elevated in aSAH patients who later developed poor outcome. In rat SAH model, ifenprodil can improve long-term sensorimotor and spatial learning deficits. Ifenprodil attenuates experimental SAH-induced neuronal death of basal cortex and hippocampal CA1 area, cellular and mitochondrial Ca2+ overload of basal cortex, blood-brain barrier (BBB) damage, and cerebral edema of early brain injury. Using in vitro models, ifenprodil declines the high-concentration glutamate-mediated intracellular Ca2+ increase and cell apoptosis in primary cortical neurons, reduces the high-concentration glutamate-elevated endothelial permeability in human brain microvascular endothelial cell (HBMEC). Altogether, our results suggest ifenprodil improves long-term neurologic deficits through antagonizing glutamate-induced excitotoxicity.


Subject(s)
Glutamic Acid , Subarachnoid Hemorrhage , Animals , Blood-Brain Barrier/metabolism , Glutamic Acid/toxicity , Humans , Piperidines/pharmacology , Piperidines/therapeutic use , Rats , Receptors, N-Methyl-D-Aspartate/metabolism , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/drug therapy
20.
J Mass Spectrom ; 56(4): e4637, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32789983

ABSTRACT

In this paper, a matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) (MALDI-FTICR-MS) imaging method was developed to rapid and in situ detect the spatial distribution of lysophospholipids (LPLs) in zebrafish. The combination of MALDI with ultrahigh-resolution FTICR-MS achieves the MS imaging of LPLs with a mass resolution up to 50 000, which allows accurate identification and clear spatial visualization of LPLs in complex biological tissues. A series of lysophosphatidylcholines (LPCs) was detected using positive ion detection mode, and their concentration differences and spatial distributions were clearly visualized in different parts of zebrafish tissue. The method is rapid, simple, and efficient, being a desirable way to understand the spatial distribution of LPLs in biosome.


Subject(s)
Lysophospholipids/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Fourier Analysis , Tissue Distribution , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...