Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(21): 14558-14565, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38755097

ABSTRACT

The biological neural network is a highly efficient in-memory computing system that integrates memory and logical computing functions within synapses. Moreover, reconfiguration by environmental chemical signals endows biological neural networks with dynamic multifunctions and enhanced efficiency. Nanofluidic memristors have emerged as promising candidates for mimicking synaptic functions, owing to their similarity to synapses in the underlying mechanisms of ion signaling in ion channels. However, realizing chemical signal-modulated logic functions in nanofluidic memristors, which is the basis for brain-like computing applications, remains unachieved. Here, we report a single-pore nanofluidic logic memristor with reconfigurable logic functions. Based on the different degrees of protonation and deprotonation of functional groups on the inner surface of the single pore, the modulation of the memristors and the reconfiguration of logic functions are realized. More noteworthy, this single-pore nanofluidic memristor can not only avoid the average effects in multipore but also act as a fundamental component in constructing complex neural networks through series and parallel circuits, which lays the groundwork for future artificial nanofluidic neural networks. The implementation of dynamic synaptic functions, modulation of logic gates by chemical signals, and diverse combinations in single-pore nanofluidic memristors opens up new possibilities for their applications in brain-inspired computing.

2.
Nano Lett ; 24(12): 3661-3669, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38408021

ABSTRACT

The lack of stability of red perovskite nanocrystals (PeNCs) remains the main problem that restricts their patterning application. In this work, the dual-ligand passivation strategy was introduced to stabilize PeNCs and inhibit their halogen ion migration during high-voltage electrohydrodynamic (EHD) inkjet printing. The as-printed red arrays exhibit the highest emisson intensity and least blue shift compared with samples with other passivation strategies under a high electric field during EHD inkjet printing. Combining with blue and green PeNC inks, single-color and tricolor color conversion layer arrays were successfully printed, with minimum pixel size of 5 µm and the highest spatial resolution of 2540 dpi. The color coordinate of CsPbBrI2 NCs arrays are located close to the red point, with a color gumat of 97.28% of Rec. 2020 standard. All of these show great potential in the application of color conversion layers in a near-eye micro-LED display.

3.
World J Surg Oncol ; 22(1): 40, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38297303

ABSTRACT

BACKGROUND: The application of machine learning (ML) for identifying early gastric cancer (EGC) has drawn increasing attention. However, there lacks evidence-based support for its specific diagnostic performance. Hence, this systematic review and meta-analysis was implemented to assess the performance of image-based ML in EGC diagnosis. METHODS: We performed a comprehensive electronic search in PubMed, Embase, Cochrane Library, and Web of Science up to September 25, 2022. QUADAS-2 was selected to judge the risk of bias of included articles. We did the meta-analysis using a bivariant mixed-effect model. Sensitivity analysis and heterogeneity test were performed. RESULTS: Twenty-one articles were enrolled. The sensitivity (SEN), specificity (SPE), and SROC of ML-based models were 0.91 (95% CI: 0.87-0.94), 0.85 (95% CI: 0.81-0.89), and 0.94 (95% CI: 0.39-1.00) in the training set and 0.90 (95% CI: 0.86-0.93), 0.90 (95% CI: 0.86-0.92), and 0.96 (95% CI: 0.19-1.00) in the validation set. The SEN, SPE, and SROC of EGC diagnosis by non-specialist clinicians were 0.64 (95% CI: 0.56-0.71), 0.84 (95% CI: 0.77-0.89), and 0.80 (95% CI: 0.29-0.97), and those by specialist clinicians were 0.80 (95% CI: 0.74-0.85), 0.88 (95% CI: 0.85-0.91), and 0.91 (95% CI: 0.37-0.99). With the assistance of ML models, the SEN of non-specialist physicians in the diagnosis of EGC was significantly improved (0.76 vs 0.64). CONCLUSION: ML-based diagnostic models have greater performance in the identification of EGC. The diagnostic accuracy of non-specialist clinicians can be improved to the level of the specialists with the assistance of ML models. The results suggest that ML models can better assist less experienced clinicians in diagnosing EGC under endoscopy and have broad clinical application value.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/diagnosis , Endoscopy , Machine Learning
4.
Nano Lett ; 23(20): 9383-9391, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37792754

ABSTRACT

Vertically aligned carbon nanotubes array offers unique properties for various applications. Detaching them from the growth substrate, while preserving their vertical structure, is essential. Quartz, a cost-effective alternative to silicon wafers and metal-based substrates, can serve as both a reaction chamber and a growth substrate. However, the strong adhesive interaction with the quartz substrate remains an obstacle for further applications. Herein, we presented a simple and well-controlled exfoliation strategy assisted by the introduction of heteroatoms at root ends of a carbon nanotubes array. This strategy forms lower surface polarity of the carbon fragment to significantly reduce adhesion to the quartz substrate, which contributes to the effortless exfoliation. Furthermore, this scalable approach enables potential mass production on recyclable quartz substrates, enhancing the cost-effectiveness and efficiency. This work can establish a solid foundation for cost-competitive carbon nanotube-based technologies, offering a promising avenue for their widespread applications.

5.
J Phys Chem Lett ; 14(11): 2891-2900, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36927003

ABSTRACT

The human brain completes intelligent behaviors such as the generation, transmission, and storage of neural signals by regulating the ionic conductivity of ion channels in neuron cells, which provides new inspiration for the development of ion-based brain-like intelligence. Against the backdrop of the gradual maturity of neuroscience, computer science, and micronano materials science, bioinspired nanofluidic iontronics, as an emerging interdisciplinary subject that focuses on the regulation of ionic conductivity of nanofluidic systems to realize brain-like functionalities, has attracted the attention of many researchers. This Perspective provides brief background information and the state-of-the-art progress of nanofluidic intelligent systems. Two main categories are included: nanofluidic transistors and nanofluidic memristors. The prospects of nanofluidic iontronics' interdisciplinary progress in future artificial intelligence fields such as neuromorphic computing or brain-computer interfaces are discussed. This Perspective aims to give readers a clear understanding of the concepts and prospects of this emerging interdisciplinary field.


Subject(s)
Artificial Intelligence , Brain , Humans
6.
Nanoscale Adv ; 4(6): 1517-1526, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-36134369

ABSTRACT

Catalytic reactions within nanochannels are of significant importance in disclosing the mechanisms of catalytic confinement effects and developing novel reaction systems for scientific and industrial demands. Interestingly, catalytic confinement effects exist in both biological and artificial nanochannels, which enhance the reaction performance of various chemical reactions. In this minireview, we investigate the recent advances on catalytic confinement effects in terms of the reactants, reaction processes, catalysts, and products in nanochannels. A systematic discussion of catalytic confinement effects associated with biological synthesis in bio-nanochannels and catalytic reactions in artificial nanochannels in chemical engineering is presented. Furthermore, we summarize the properties of reactions both in nature and chemical engineering and provide a brief overlook of this research field.

7.
Nature ; 610(7930): 74-80, 2022 10.
Article in English | MEDLINE | ID: mdl-36163287

ABSTRACT

The adverse impact of particulate air pollution on human health1,2 has prompted the development of purification systems that filter particulates out of air3-5. To maintain performance, the filter units must inevitably be replaced at some point, which requires maintenance, involves costs and generates solid waste6,7. Here we show that an ion-doped conjugated polymer-coated matrix infiltrated with a selected functional liquid enables efficient, continuous and maintenance-free air purification. As the air to be purified moves through the system in the form of bubbles, the functional fluid provides interfaces for filtration and for removal of particulate matter and pollutant molecules from air. Theoretical modelling and experimental results demonstrate that the system exhibits high efficiency and robustness: its one-time air purification efficiency can reach 99.6%, and its dust-holding capacity can reach 950 g m-2. The system is durable and resistant to fouling and corrosion, and the liquid acting as filter can be reused and adjusted to also enable removal of bacteria or odours. We anticipate that our purification approach will be useful for the development of specialist air purifiers that might prove useful in a settings such as hospitals, factories and mines.


Subject(s)
Absorption, Physicochemical , Air Pollutants , Filtration , Particulate Matter , Air Pollutants/chemistry , Air Pollutants/isolation & purification , Bacteria/isolation & purification , Dust/prevention & control , Filtration/instrumentation , Filtration/methods , Humans , Odorants/prevention & control , Particulate Matter/chemistry , Particulate Matter/isolation & purification , Polymers/chemistry , Solid Waste
8.
Nat Commun ; 13(1): 1906, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35393415

ABSTRACT

Universal visual quantitative chemical detection technology has emerged as an increasingly crucial tool for convenient testing with immediate results in the fields of environmental assessment, homeland security, clinical drug testing and health care, particularly in resource-limited settings. Here, we show a host-guest liquid gating mechanism to translate molecular interface recognition behavior into visually quantifiable detection signals. Quantitative chemical detection is achieved, which has obvious advantages for constructing a portable, affordable, on-site sensing platform to enable the visual quantitative testing of target molecules without optical/electrical equipment. Experiments and theoretical calculations confirm the specificity and scalability of the system. This mechanism can also be tailored by the rational design of host-guest complexes to quantitatively and visually detect various molecules. With the advantages of versatility and freedom from additional equipment, this detection mechanism has the potential to revolutionize environmental monitoring, food safety analysis, clinical drug testing, and more.

9.
Innovation (Camb) ; 3(3): 100231, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35445203

ABSTRACT

Thermal transfer systems involving temperature control through heating, ventilation, and air conditioning applications have emerged as one of the largest energy issues in buildings. Traditional approaches mainly comprise closed and open systems, both of which have certain advantages and disadvantages in a single heating or cooling process. Here we report a thermal adaptive system with beneficial energy-saving properties, which uses functional liquid to exhibit high metastability, providing durability in a temperature-responsive liquid gating system. With an efficient use of energy, this system achieves smart "breathing" during both heating and cooling processes to dynamically tune the indoor temperature. Theoretical modeling and experiments demonstrate that the adaptive, sandwich-structured, membrane-based system can achieve temperature control, producing obvious advantages of energy saving compared with both closed and open systems through the bistable interfacial design of the liquid gating membrane. Further energy saving evaluation of the system on the basis of simulation with current global greenhouse plantation data shows a reduction of energy consumption of 7.9 × 1013 kJ/year, a percentage change of ∼11.6%. Because the adaptive system can be applied to a variety of thermal transfer processes, we expect it to prove useful in a wide range of real-world applications.

10.
Angew Chem Int Ed Engl ; 61(17): e202201109, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35156299

ABSTRACT

Carbon dioxide (CO2 ) capture and storage technologies are promising to limit CO2 emission from anthropogenic activities, to achieve carbon neutrality goals. CO2 capture requires one to separate CO2 from other gases, and therefore a gas flow system that exhibits discernible gating behaviors for CO2 would be very useful. Here we propose a self-adaptive CO2 gas valve composed of chemically responsive liquid gating systems. The transmembrane critical pressures of the liquid gate vary upon the presence of CO2 , due to the superamphiphiles assembled by poly(propylene glycol) bis(2-aminopropyl ether) and oleic acid in gating liquids that are protonated specifically by CO2 . It is shown that the valve can perform self-adaptive regulation for specific gases and different concentrations of CO2 . This protonation-induced liquid gating mechanism opens a potential platform for applications of CO2 separators, detectors, sensors and beyond.

11.
ACS Nano ; 16(2): 2672-2681, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35040625

ABSTRACT

External-stimuli-driven soft actuators overcome several limitations inherent in traditional mechanical-driven technology considering the coming age of flexible robots, which might face harsh working conditions and rigorous multifunctional requirements. However, how to achieve multi-external-stimuli response, fast speed, and precise control of the position and angle of the actuator, especially working in a toxic liquid or vapor environment, still requires long-term efforts. Here, we report a multi-external-stimuli-driven sandwich actuator with aligned carbon nanotubes as the constructive subject, which can respond to various types of liquids (organic solvents), vapor, and solar light. The actuator has an ultrafast response speed (<10 ms) and can accurately adjust the bending angle range from 0° to 180°. Through manipulating the stimuli positions, actuators can be wound into varied turns when simulating a flexible robotic arm. Hence, liquid/vapor/light-driven actuators are able to support diverse programmable motions, such as periodic blooming, gesture variations, caterpillar crawling, toxic surface evading, and bionic phototaxis. We believe that this multifunctional actuator is promising in supporting a complex scenario to complete a variety of tasks in the fields of healthcare, bioengineering, chip technology, and mobile sensors.


Subject(s)
Nanotubes, Carbon , Locomotion , Solvents
12.
Food Funct ; 12(19): 8887-8898, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34606539

ABSTRACT

Milk protein is one of the eight major allergens, and α-lactalbumin (α-LA) is one of the major allergens of bovine milk protein. Our previous studies found that Lactiplantibacillus plantarum HM-22 (L. plantarum HM-22) showed a good gastrointestinal survival rate and intestinal colonization. To investigate the effect of L. plantarum HM-22 on intestinal inflammation and intestinal microbiota in α-LA-induced allergic mice, in this study, L. plantarum HM-22 at low and high doses was intragastrically administered to α-LA-induced allergic mice for 5 weeks. The results showed that L. plantarum HM-22 significantly relieved the weight loss and organ index of α-LA-induced allergic mice (p < 0.05). L. plantarum HM-22 increased the levels of interleukin-10 (IL-10), interferon-γ (IFN-γ) and transforming growth factor-ß (TGF-ß) in the serum of α-LA-induced allergic mice and decreased the levels of total immunoglobulin E (IgE) and the proinflammatory factor interleukin-4 (IL-4) (p < 0.05). The crypt structure of the colon tissues of α-LA-induced allergic mice changed, goblet cells decreased, and the phenomenon of a large number of inflammatory corpuscles that appeared was improved and alleviated with the intervention of L. plantarum HM-22 by hematoxylin-eosin (HE) staining. Western blot analysis showed that L. plantarum HM-22 significantly increased the expression of occludin and claudin-1 in the colon of α-LA-induced allergic mice and decreased the expression of the inflammatory proteins p65 and IκBα (p < 0.05). The intestinal microbiota of mice in each group was determined by 16S rRNA amplicon sequencing, and the results showed that intervention with L. plantarum HM-22 improved the intestinal microbes of α-LA-induced allergic mice. Spearman's correlation analysis revealed the correlation between intestinal microbiota changes and the α-LA-induced allergy-related index. This study provides a theoretical basis for probiotics to prevent allergies by changing the intestinal microbiota.


Subject(s)
Lactobacillus plantarum , Milk Hypersensitivity/prevention & control , Probiotics/administration & dosage , Animals , Disease Models, Animal , Female , Gastrointestinal Microbiome/drug effects , Immunoglobulin E/blood , Immunoglobulin E/drug effects , Mice , Mice, Inbred BALB C , Probiotics/pharmacology
13.
Science ; 373(6555): 628-629, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34353942

Subject(s)
Nanotechnology
14.
Light Sci Appl ; 10(1): 127, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34135302

ABSTRACT

Safe and precise control of gas flow is one of the key factors to many physical and chemical processes, such as degassing, natural gas transportation, and gas sensor. In practical application, it is essential for the gas-involved physicochemical process to keep everything under control and safe, which significantly relies on the controllability, safety, and stability of their valves. Here we show a light-responsive and corrosion-resistant gas valve with non-thermal effective liquid-gating positional flow control under a constant pressure by incorporating dynamic gating liquid with light responsiveness of solid porous substrate. Our experimental and theoretical analysis reveal that the photoisomerization of azobenzene-based molecular photoswitches on the porous substrate enabled the gas valve to possess a light-responsive and reversible variation of substantial critical pressure of non-thermal effective gas flow switch. Moreover, the chemically inert gating liquid prevented the solid substrate from corrosion and, by combining with the high spatiotemporal resolution of light, the gas valve realizes a precisely positional open and close under a steady-state pressure. The application demonstrations in our results show the potentials of the new gas valve for bringing opportunities to many applications, such as gas-involved reaction control in microfluidics, soft actuators, and beyond.

15.
Nano Lett ; 20(10): 6937-6946, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32852959

ABSTRACT

Understanding and exploring the transport behaviors of ions and molecules in the nano and sub-nano confinement has great meaning in the fields of nanofluidics and basic transport physics. With the rapid progress in nanofabrication technology and effective characterization protocols, more and more anomalous transport behaviors have been observed and the ions/molecules inside small confinement can behave dramatically differently from bulk systems and present new mechanisms. In this Mini Review, we summarize the recent advances in the anomalous ionic/molecular transport behaviors in nano and sub-nano confinement. Our discussion includes the ionic/molecular transport of various confinement with different surface properties, static structures, and dynamic structures. Furthermore, we provide a brief overview of the latest applications of nanofluidics in membrane separation and energy conversion.

16.
Microb Pathog ; 141: 103980, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31962183

ABSTRACT

The purpose of this study was to evaluate the antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. The determination of antibacterial activity was based on the minimum inhibitory concentration (MIC) and the minimum bactericide concentration (MBC). Further, the antibacterial mechanism was explored by a growth curve assay, scanning electron microscopy (SEM), cell membrane permeability, membrane potential and respiratory chain dehydrogenase determination. The MIC and the MBC of linalool were 431 µg/mL and 862 µg/mL, respectively. The growth curve assay showed that the growth of P. aeruginosa was inhibited. The results of SEM revealed that linalool disrupted the normal morphology of the cell. The release of nucleic acids as well as the decrease in the membrane potential proved that the membrane integrity of P. aeruginosa was destroyed. Moreover, the respiratory chain was damaged by respiratory chain dehydrogenase determination as the absorbance at 490 nm decreased. This research suggested that it was possible for linalool to become a preservative of food by destroying the cell membrane, resulting in cell death.


Subject(s)
Acyclic Monoterpenes/pharmacology , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/drug effects , Cell Membrane/drug effects , Electron Transport Complex I/metabolism , Membrane Potentials/drug effects , Microbial Sensitivity Tests , Mitochondria/drug effects , Pseudomonas aeruginosa/ultrastructure
17.
Environ Pollut ; 250: 338-345, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31022641

ABSTRACT

Photocatalytic degradation is an attractive strategy to purify waste water contaminated by macromolecular organics. Compared with the single-component photocatalysts, heterostructures of different semiconductors have been widely used to improve the photocatalytic performance. In this work, we fabricate a hetero-structured photocatalyst consisting of two-dimensional graphitic carbon nitride (g-C3N4) nanosheets and commercial MoO3 microparticles through a simple mixing and annealing process. The photocatalytic performance was evaluated in various dye degradation reactions, especially Rhodamine (RhB) degradation. The MoO3/g-C3N4 composite shown a significant improvement compared with individual MoO3 or g-C3N4 as well as their physical mixture. By applying electron spin resonance (ESR) spin-trap spectra, radical scavenge experiments and electrochemical analysis, we find that a direct Z-scheme charge transfer between MoO3 and g-C3N4 not only causes an accumulation of electrons in g-C3N4 and holes in MoO3, but also boosts the formation of superoxide radical and hydroxyl radical. The superoxide radical and hole dominate the photocatalytic degradation, while the hydroxyl radical plays a negligible role and its production can be suppressed by lowering the pH value.


Subject(s)
Coloring Agents/chemistry , Models, Chemical , Water Pollutants, Chemical/chemistry , Catalysis , Graphite/chemistry , Hydroxyl Radical , Light , Nitriles/chemistry , Photochemical Processes
18.
Environ Sci Pollut Res Int ; 25(18): 17310-17320, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29654454

ABSTRACT

A superparamagnetic graphene oxide (GO)/Fe3O4 nanocomposite (MGO) was prepared by a facile in situ co-precipitation strategy, resulting in a prospective material for the application of graphene oxide in wastewater treatment. MGO was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The prepared adsorbent showed a high adsorption efficiency relevant to the purification of dye-contaminated wastewater and could be readily magnetically separated. The maximum adsorption capacity was ca. 546.45 mg g-1 for the common cationic dye methylene blue (MB) and ca. 628.93 mg g-1 for the anionic dye Congo red (CR). The adsorption processes fit the pseudo-second-order kinetic model well, which revealed that these processes may involve the chemical interaction between adsorbate and adsorbent. The thermodynamic parameters indicated that the adsorption reaction was an endothermic and spontaneous process. Furthermore, the prepared magnetic adsorbent had a wide effective pH range from 5 to 11 and showed good stability after five reuse cycles. The synthetic MGO showed great potential as a promising adsorbent for organic contaminant removal in wastewater treatment.


Subject(s)
Graphite/chemistry , Methylene Blue/chemistry , Nanocomposites/chemistry , Oxides/chemistry , Wastewater/chemistry , Adsorption , Kinetics , Magnetite Nanoparticles , Microscopy, Electron, Transmission , Prospective Studies , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
19.
J Phys Chem B ; 119(30): 9940-8, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26135216

ABSTRACT

Silica nanoparticles dispersed in polystyrene, poly(methyl methacrylate), and poly(ethylene oxide) melts have been investigated using a density functional approach. The polymers are regarded as coarse-grained semiflexible chains, and the segment sizes are represented by their Kuhn lengths. The particle-particle and particle-polymer interactions are calculated with the Hamaker theory to reflect the relationship between particles and polymer melts. The effects of particle volume fraction and size on the particle dispersion have been quantitatively determined to evaluate their dispersion/aggregation behavior in these polymer melts. It is shown that theoretical predictions are generally in good agreement with the corresponding experimental results, providing the reasonable verification of particle dispersion/agglomeration and polymer depletion.

SELECTION OF CITATIONS
SEARCH DETAIL
...