Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Sci Food Agric ; 104(11): 6626-6639, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38523343

ABSTRACT

BACKGROUND: Optimizing biochar application is vital for enhancing crop production and ensuring sustainable agricultural production. A 3-year field experiment was established to explore the effects of varying the biochar application rate (BAR) on crop growth, quality, productivity and yields. BAR was set at 0, 10, 50 and 100 t ha-1 in 2018; 0, 10, 25, 50 and 100 t ha-1 in 2019; and 0, 10, 25 and 30 t ha-1 in 2020. Crop quality and growth status and production were evaluated using the dynamic technique for order preference by similarity to ideal solution with the entropy weighted method (DTOPSIS-EW), principal component analysis (PCA), membership function analysis (MFA), gray relation analysis (GRA) and the fuzzy Borda combination evaluation method. RESULTS: Low-dose BAR (≤ 25 t ha-1 for cotton; ≤ 50 t ha-1 for sugar beet) effectively increased biomass, plant height, leaf area index (LAI), water and fertility (N, P and K) productivities, and yield. Biochar application increased the salt absorption and sugar content in sugar beet, with the most notable increases being 116.45% and 20.35%, respectively. Conversely, BAR had no significant effect on cotton fiber quality. The GRA method was the most appropriate for assessing crop growth and quality. The most indicative parameters for reflecting cotton and sugarbeet growth and quality status were biomass and LAI. The 10 t ha-1 BAR consistently produced the highest scores and was the most economically viable option, as evaluated by DTOPSIS-EW. CONCLUSION: The optimal biochar application strategy for improving cotton and sugar beet cultivation in Xinjiang, China, is 10 t ha-1 biochar applied continuously. © 2024 Society of Chemical Industry.


Subject(s)
Beta vulgaris , Charcoal , Crop Production , Fertilizers , Gossypium , Beta vulgaris/chemistry , Beta vulgaris/growth & development , Charcoal/chemistry , Gossypium/growth & development , Gossypium/metabolism , China , Crop Production/methods , Fertilizers/analysis , Biomass
2.
J Sci Food Agric ; 104(5): 2798-2808, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38029351

ABSTRACT

BACKGROUND: Improvements in farmland soil organic carbon (SOC) stock enhance crop yield and soil fertility while mitigating climate change. Rational fertilization in agricultural production is crucial for safeguarding SOC stock. In this study, field experiments were conducted with different ratios of chemical fertilizer reduction and organic fertilizer substitution for three consecutive years (2018-2020) to explore their effects and interlinkages on SOC fractions, soil properties and SOC stock. RESULTS: The results showed that organic fertilizer substitution increased SOC and its fractions content, SOC stock (by 3.98-12.98% and 7.15-18.13%) and soil fertility index (by 11.76-49.26% and 33.33-91.47%) compared to conventional fertilization in 2019 and 2020, while chemical fertilizer reduction had the opposite effect. Moreover, soil properties (except total nitrogen to total phosphorus ratio, N/P) and SOC fractions significantly affected SOC stock, with SOC fractions contributing more than soil properties. The high sensitivity of microbial biomass carbon (MBC) and dissolved organic carbon (DOC) can indicate changes in soil carbon pool. Structural equation modeling (SEM) revealed that organic fertilizer substitution increased SOC content and stock by increasing SOC fractions [recalcitrant organic carbon (ROC) and labile organic carbon (LOC) fractions] content and soil fertility. CONCLUSIONS: Our study revealed the corresponding mechanisms of the two fertilization modes affecting SOC stock changes. The use of organic fertilizer substitution is recommended to increase SOC stocks and soil fertility in wheat fields. © 2023 Society of Chemical Industry.


Subject(s)
Carbon , Soil , Soil/chemistry , Carbon/chemistry , Fertilizers , Triticum , Agriculture/methods , Nitrogen/analysis
3.
Front Plant Sci ; 13: 988663, 2022.
Article in English | MEDLINE | ID: mdl-36172558

ABSTRACT

Organic fertilizer substitution (OFS) is an effective strategy for reducing the chemical fertilizer usage; however, the effects of different OFS ratios (OFSRs) on maize yield, soil fertility, and heavy metal pollution risk are still unclear. Therefore, determining a suitable OFSR is important. Through the pot experiment, no fertilizer (CK) and organic fertilizer substituting 0% (CF, chemical fertilizer alone), 8% (OF8), 16% (OF16), and 24% (OF24) of the chemical N fertilizer were set to investigate the effects of different OFSRs on maize growth and yield, soil properties (available nutrients, carbon fractions, and carbon pool indices), and nutrients and heavy metals in grain and soil. The results showed that OF8, OF16, and OF24 improved soil fertility by increasing soil organic carbon (SOC, by 10.05-16.26%) and its fractions, most middle- and micro-nutrients content, and carbon pool management index (CPMI, by 17.45-30.31%) compared with CF, while improving grain nutritional quality. However, they increased heavy metals content in grain and soil and their Nemerow comprehensive pollution index (NCPI, by 4.06-16.56% in grain and 2.55-5.57% in soil) but did not cause pollution. Among them, throughout the growth period, only OF8 treatment increased soil available nitrogen (AN), phosphorus (AP), and potassium (AK) content by 3.04-11.15%, 7.11-8.05%, and 0.12-6.05%, respectively, compared with CF, which thus significantly promoted maize growth and increased yield (by 35.65%); the NCPI of grain and soil was however lower than that OF16 and OF24. In conclusion, substitution ratio of 8% was considered ideal for promoting maize growth, improving yield and soil fertility, with a low pollution risk. The results of this study would aid in guiding the scientific application of OFS technology to agricultural production, thereby contributing to resource utilization of organic waste and sustainable agricultural development.

4.
Sci Total Environ ; 851(Pt 1): 158132, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36007638

ABSTRACT

Traditional organic fertilizer substitution is an effective measure for increasing crop yield and soil quality while reducing chemical fertilizer input. However, the effects of commercial organic fertilizer substitution (COFS) on soil quality and wheat yield, and the underlying mechanisms, are unknown. In this study, agricultural fields with low fertility (LF) and high (HF) fertility soils were selected for a two-year (2018-2019) field experiment in the oasis region of Northwest China. Three fertilization treatments with three replications (no fertilization, CK; local conventional chemical fertilizer application, LCF; and 20 % of inorganic nitrogen (N) was substituted by commercial organic fertilizer, COFS) were established to study the effects of COFS on wheat growth, yield, nutrient-use efficiency and soil quality. The results showed that compared with LCF in 2018 and 2019, COFS in LF and HF promoted wheat growth, improved nitrogen use efficiency (NUE) and phosphorus use efficiency (PUE), and increased yield (by 1.52 %-3.05 % and 1.16 %-1.39 %) and soil quality (by 15.09 %-28.63 % and 22.53 %-64.82 %) by improving most soil indicators (e.g., soil organic matter (SOM) and available nutrients). Moreover, SOM and available nutrients significantly affect soil quality and wheat yield, which can monitor changes in soil quality and wheat yield. In conclusion, our study revealed that the mechanism of COFS in HF and LF increased wheat yield by improving soil quality. COFS is recommended for agricultural production, but its continuous application requires monitoring changes in SOM and available nutrients to adjust fertilization to guarantee soil quality and crop yield. This study provides guidance for the scientific application of COFS to improve farmland productivity and soil quality and helps to promote healthy and sustainable agricultural development.


Subject(s)
Fertilizers , Soil , Agriculture/methods , China , Nitrogen/analysis , Phosphorus , Triticum
5.
Front Plant Sci ; 13: 894172, 2022.
Article in English | MEDLINE | ID: mdl-35783946

ABSTRACT

Tree shelterbelts are crucial for maintaining the ecological environment of oasis, but they may also compete for soil water with adjacent crops, affecting crop yields. To evaluate the impacts of the shelterbelt on water use efficiency (WUE) and normalized water productivity (WP) of adjacent cotton plants, the biomass (B) and WUE of cotton with different distances from the shelterbelt (0.1H, 0.5H, 1H, 2H, and 3H; average tree height = 15 m [H]) were estimated based on unmanned aerial vehicle (UAV) remote sensing data combined with the FAO crop water response model AquaCrop. Besides, the accuracy and universality of the estimation method were also evaluated. The results showed that the method based on UAV remote sensing data and AquaCrop can accurately estimate the impact range and intensity of shelterbelt on WUE, water consumption, and B of adjacent cotton plants. Fierce water competition between shelterbelt and cotton was detected within 0.1H-1H, and the competitiveness of the shelterbelt was weaker in the plots >1H than in the 0.1H-1H. The B, actual evapotranspiration (Tc), and WUE of cotton at 0.1H decreased by 59.3, 48.8, and 23.6%, respectively, compared with those at 3H, but the cotton plants at 2H and 3H were completely unaffected by the shelterbelt. Besides, the B estimated based on WP (root mean square error [RMSE] = 108 g/m2, d = 0.89) was more accurate than that estimated based on WUE (RMSE = 118 g/m2, d = 0.85). This study clarifies the inter-species competition for soil water between crops and shelterbelts under drip irrigation in oases in China.

6.
Huan Jing Ke Xue ; 43(4): 2192-2203, 2022 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-35393843

ABSTRACT

Long-term saline water irrigation will increase soil salinity, adversely affect soil physical and chemical properties, and change the diversity of soil bacteria. Straw returning can improve the soil microenvironment and subsequently affect soil enzyme activity and bacterial community structure diversity. This experiment used two types of irrigation water salinity:fresh water (FW, 0.35 dS·m-1) and saline water (SW, 8.04 dS·m-1). Under each irrigation water salinity, the amount of cotton straw applied was 0 and 6000 kg·hm-2 (represented by FWST and SWST, respectively). The results showed that:compared with those under fresh water irrigation, saline water irrigation significantly increased the soil salt, bulk density, total carbon, and available phosphorus but significantly decreased available potassium content. Under saline water irrigation, straw returning significantly increased the soil total carbon, total nitrogen, available potassium, and available phosphorus but reduced soil bulk density. Compared with those under fresh water irrigation, soil sucrase, alkaline phosphatase, and catalase activities under saline water irrigation decreased by 57.24%, 35.15%, and 3.91%, respectively, whereas urease activity increased by 26.73%. However, straw returning significantly increased sucrase, alkaline phosphatase, and catalase activities but decreased urease activity. Saline water irrigation decreased the relative abundance of Acidobacteriota, Actinobacteriota, Bacteroidota, Verrucomicrobiota, and Firmicutes and increased the abundance of Gemmatimonadota and Myxococcota. Under saline water irrigation, straw returning significantly increased the relative abundance of Actinobacteriota, Bacteroidetes, Firmicutes, Crenarchaeota, Sphingomonas, Dongia, and Steroidobacter. NMDS results also showed that saline water irrigation and straw returning changed the bacterial community structure. In conclusion, straw returning can improve soil nutrient content, reduce soil bulk density and salinity, and then change soil enzyme activity and bacterial community structure diversity. The change in soil bacterial community composition was mainly affected by soil salinity and bulk density. Therefore, straw returning can improve soil fertility and help maintain the health of soil ecosystem. This study revealed a relationship between soil enzyme activities and bacterial communities, which provides a theoretical basis and mechanism for applying cotton stalk to regulate the soil enzyme and micro-ecological environment.


Subject(s)
Ecosystem , Soil , Alkaline Phosphatase , Bacteria , Carbon , Catalase , Phosphorus , Potassium , Saline Waters , Soil/chemistry , Soil Microbiology , Sucrase , Urease
7.
PLoS One ; 16(8): e0256000, 2021.
Article in English | MEDLINE | ID: mdl-34375358

ABSTRACT

The sensitivity of cotton to salt stress depends on the genotypes and salt types. Understanding the mechanism of ion homeostasis under different salt stresses is necessary to improve cotton performance under saline conditions. A pot experiment using three salt stresses saline stress (NaCl+Na2SO4), alkaline stress (Na2CO3+NaHCO3), and saline-alkaline stress (NaCl+Na2SO4+Na2CO3+NaHCO3) and two cotton varieties (salt-tolerant variety L24 and salt-sensitive variety G1) was conducted. The growth, ion concentrations, and Na+ transport-related gene expression in the cotton varieties were determined. The inhibitory effects of saline-alkaline stress on cotton growth were greater than that of either saline stress or alkaline stress alone. The root/shoot ratio under alkaline stress was significantly lower than that under saline stress. The salt-tolerant cotton variety had lower Na and higher K concentrations in the leaves, stems and roots than the salt-sensitive variety under different salt stresses. For the salt-sensitive cotton variety, saline stress significantly inhibited the absorption of P and the transport of P, K, and Mg, while alkaline stress and saline-alkaline stress significantly inhibited the uptake and transport of P, K, Ca, Mg, and Zn. Most of the elements in the salt-tolerant variety accumulated in the leaves and stems under different salt stresses. This indicated that the salt-tolerant variety had a stronger ion transport capacity than the salt-sensitive variety under saline conditions. Under alkaline stress and salt-alkaline stress, the relative expression levels of the genes GhSOS1, GhNHX1 and GhAKT1 in the salt-tolerant variety were significantly higher than that in the salt-sensitive variety. These results suggest that this salt-tolerant variety of cotton has an internal mechanism to maintain ionic homeostasis.


Subject(s)
Gene Expression Regulation, Plant , Gossypium/metabolism , Homeostasis , Plant Proteins/metabolism , Salt Stress , Sodium/metabolism , Stress, Physiological , Gossypium/genetics , Gossypium/growth & development , Ion Transport , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/genetics , Salt Tolerance
8.
PLoS One ; 16(7): e0249730, 2021.
Article in English | MEDLINE | ID: mdl-34288915

ABSTRACT

Drip irrigation under plastic mulch is widely used in Xinjiang, Northwest China. It can not only save water, but also reduce nutrient loss and improve fertilizer utilization. However, it is not clear whether the leaching occurs or not, what is the leaching amount? What is the relationship among fertilization, irrigation regimes, loss, cotton absorption, and cotton field under different fertilization and irrigation management under drip irrigation? Studying these issues not only provides reference for the formulation of fertilization and irrigation systems, but also is of great significance for reducing non-point source pollution. A long-term positioning experiment was conducted from 2009 to 2012 in Baotou Lake farm in Korla City, Xinjiang, with drip-irrigated cotton (Gossypium hirsutum L.) under different N fertilizer and irrigation amounts. The treatments were designed comprising Control (CK,0 N, 0 P, and 0 K with an irrigation of 480 mm) and the following three other treatments: (1) Conventional fertilize and irrigation (CON, 357 kg N hm-2, 90 kg P hm-2, 0 kg K hm-2, and irrigation of 480 mm); (2) Conventional fertilization and Optimizing irrigation (OPT, 357 kg N hm-2, 90 kg P hm-2, 62 kg K hm-2, and irrigation of 420 mm); and (3) Optimizing fertilization and irrigation (OPTN, 240 kg N hm-2, 65 kg P hm-2, 62 kg K hm-2, and irrigation of 420 mm). The results found that the leaching would occur in arid area under drip irrigation. The loss of total N, NH4+, P, N and P loss coefficient was higher under conventional fertilize and irrigation treatment while the loss of NO3- was higher under conventional fertilization and optimizing irrigation treatment. The correlations among N, P absorption by cotton, loss of NH4+ and total phosphorus were quadratic function. The total nitrogen loss and cumulative nitrogen application was lineally correlated. The loss of NO3- and cumulative nitrogen application was exponential. The nitrogen and phosphorus absorption by cotton under conventional fertilization and optimizing irrigation treatment was 24.53% and 35.86% higher than that in conventional fertilize and irrigation treatment, respectively. The cotton yield under conventional fertilization and optimizing irrigation treatment obtained higher than that in other three treatments. Therefore, the conventional fertilization and optimizing irrigation treatment was the optimal management of water and fertilizer in our study. These results demonstrate that reasonable water, nitrogen and phosphorus fertilize could not only effectively promote the absorption of nitrogen and phosphorus, but also reduce nitrogen and phosphorus losses under drip fertigation and plastic mulching.


Subject(s)
Absorption, Physicochemical , Gossypium/chemistry , Nitrogen/chemistry , Phosphorus/chemistry , Agricultural Irrigation , Soil
9.
Sci Rep ; 10(1): 21844, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33318587

ABSTRACT

To better understand the mechanism of salt tolerance, we analyzed cotton growth and the ionomes in different tissues under different types of salt-alkali stress. Cotton was exposed to the soil salt and alkali stresses, NaCl, Na2SO4, and Na2CO3 + NaHCO3, in a pot study. Salt and alkali stress significantly inhibited cotton growth, significantly reduced root length, surface area, and volume, and significantly increased relative electrical conductivity (REC) and malondialdehyde (MDA) content but also significantly increased antioxidant enzyme activities, and proline (Pro) content. The REC in leaves was higher under salt stress than under alkali stress, but the effects on Pro were in the order Na2CO3 + NaHCO3 > NaCl > Na2SO4. Principal component analysis showed a significant difference in ion composition under the different types of salt-alkali stress. Under the three types of salt-alkali stress, concentrations of Na and Mo increased significantly in different organs of cotton plants. Under NaCl stress, the absorption of Ca was inhibited, the transport capacity of P, Mg, and Cu was reduced, and the ion balance was maintained by promoting the uptake and transport of Zn, Mn, Al, and Mo. Under Na2SO4 stress, the absorption of P and Ca was inhibited, the transport capacity of Mg, B, and Cu was reduced, and the ion balance was maintained by promoting the uptake and transport of S, Zn, Fe, Mo, Al, and Co. Under Na2CO3 + NaHCO3 stress, the absorption of P and S was inhibited, the transport capacity of Mg and B was reduced, but that of Al and Fe increased, and the ion balance was maintained by promoting the uptake and transport of Mn, Mo, Ni, and Co. The relative expression of GhSOS1 and GhNHX1 in leaves increased significantly under salt stress but decreased under alkali stress. These results suggest that cotton is well-adapted to salt-alkali stress via the antioxidant enzyme system, adjustment of osmotic substances, and reconstruction of ionic equilibrium; neutral salt stress primarily disrupts the ion balance, whereas alkali stress decreases the ability to regulate Na and inhibits the absorption of mineral elements, as well as disrupts the ion balance; and the changes in the expression of salt tolerance-related genes may partially explain the accumulation of Na ions in cotton under salt-alkali stress.

10.
Environ Sci Pollut Res Int ; 27(35): 43929-43941, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32743698

ABSTRACT

Biochar has been widely accepted as a soil amendment to improve nitrogen (N) use efficiency, but the effect of biochar on N transformation metabolic pathways is unclear. A field experiment was conducted to evaluate the effect of biochar on N transformation in drip-irrigated cotton field. Four treatments were set as (1) no N fertilization (CK), (2) N fertilizer application at 300 kg ha-1 (N300), (3) N fertilizer application plus cotton straw (N300+ST), and (4) N fertilizer application plus cotton straw-derived biochar (N300+BC). Result showed that soil total N in N300+ST and N300+BC was 16.3% and 24.9% higher than that in N300, respectively. Compared with N300+ST, the nitrate N (NO3--N) in N300+BC was significantly increased. Acidolyzable N and non-acidolyzable N in N300+ST and N300+BC were higher than those in CK and N300, while N300+BC performed better than N300+ST. Furthermore, the N fertilizer use efficiency of cotton in N300+ST and N300+BC was 15.1% and 23.2% higher than that in N300, respectively. Both N fertilizer incorporations with straw and biochar significantly altered the microbial community structures and N metabolic pathways. Genes related to denitrification and nitrate reduction in N300+ST were higher than those in N300, and N300+BC significantly increased nitrification and glutamate synthesis genes. Therefore, N fertilizer application plus cotton straw-derived biochar changed the microbial community composition, increased nitrification and glutamate synthesis enzyme genes which were beneficial to the accumulation of soil N content, and improved soil N retention capacity thus to increase N fertilizer use efficiency.


Subject(s)
Nitrogen , Soil , Charcoal , Fertilizers/analysis , Nitrogen/analysis
11.
Huan Jing Ke Xue ; 41(5): 2455-2467, 2020 May 08.
Article in Chinese | MEDLINE | ID: mdl-32608865

ABSTRACT

A shortage of freshwater resources has become a fundamental and chronic problem for sustainable agriculture development in arid regions. Use of saline water irrigation has become an important means for alleviating freshwater scarcity. However, long-term irrigation with saline water may cause salt accumulation in the soil, and further affect nitrogen transformation and N2O emission. To investigate this, we conducted a ten-year field experiment to evaluate the effect of irrigation water salinity and N amount on N2O emission and denitrifying bacterial communities. The experimental design was a 2×2 factorial with two irrigation water salinity levels (salinity levels are expressed as electrical conductivity), 0.35 dS·m-1 and 8.04 dS·m-1, and two N amounts, 0 kg·hm-2 and 360 kg·hm-2, representing SFN0, SHN0, SFN360, and SHN360, respectively. The results indicated that long-term saline water irrigation significantly increased soil salinity, moisture, and NH4+-N content, whereas it decreased soil pH, NO3--N, organic matter, and total nitrogen content. Irrigation with saline water significantly inhibited N2O emission, being associated with a decreased in level of 45.19% (unfertilized plots) and 43.50% (fertilized plots) compared with irrigation with fresh water. N2O emission increased as the N amount increased; the N2O emission was 161% higher in the fertilized plots than in the unfertilized plots. In the unfertilized plots, saline water irrigation significantly reduced the activity of denitrifying enzymes, the abundance of nirK, nirS, and nosZ, and the diversity of denitrifying bacterial communities. In the fertilized plots, saline water irrigation did not significantly affect the abundance of nosZ, whereas it significantly reduced the abundance of nirK and nirS. Saline water irrigation and nitrogen application altered the community structures of denitrifying bacteria with nirK, nirS, and nosZ; the irrigation water salinity seemed to have a greater impact on the denitrifying bacterial community in comparison with fertilization. Linear discriminant analysis (LDA) effect size (LEfSe) analysis demonstrated that denitrifying bacterial potential biomarkers increased as the water salinity increased, meaning that saline water irrigation could alter the community structures of denitrifying bacteria, and promote the growth of dominant species. Our findings indicate that increased abundance of nosZ, nirK, and nirS promoted N2O emission, and although long-term saline water reduced soil N2O emission, it resulted in a continuous increase of soil salinity. The emission of N2O had extremely positive correlation with soil NO3--N, organic matter, total nitrogen, denitrifying bacteria abundance, and denitrifying enzyme activities, and was negatively correlated with soil moisture. The soil physiochemical properties and the community structure of denitrifying bacteria had a significant influence on soil N2O emission in cotton fields, and nirS bacteria showed the highest association with N2O emission, thus it might be a dominant microflora in the process of denitrification. This information will aid in reducing atmospheric N2O emissions in agriculturally productive alluvial grey desert soils.


Subject(s)
Nitrous Oxide/analysis , Soil Microbiology , Bacteria , Denitrification , Saline Waters , Soil
12.
Sci Rep ; 10(1): 489, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949227

ABSTRACT

Soil nitrification via ammonia oxidation is a key ecosystem process in terrestrial environments, but little is known of how increasing irrigation of farmland soils with saline waters effects these processes. We investigated the effects of long-term irrigation with saline water on the abundances and community structures of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Irrigation with brackish or saline water increased soil salinity (EC1:5) and NH4-N compared to irrigation with freshwater, while NO3-N, potential nitrification rates (PNR) and amoA gene copy numbers of AOA and AOB decreased markedly under irrigation regimes with saline waters. Moreover, irrigation with brackish water lowered AOA/AOB ratios. PNR was positively correlated with AOA and AOB amoA gene copy numbers across treatments. Saline and brackish water irrigation significantly increased the diversity of AOA, as noted by Shannon index values, while saline water irrigation markedly reduced AOB diversity. In addition, irrigation with brackish or fresh waters resulted in higher proportions of unclassified taxa in the AOB communities. However, irrigation with saline water led to higher proportions of unclassified taxa in the AOA communities along with the Candidatus Nitrosocaldus genus, as compared to soils irrigated with freshwater. AOA community structures were closely associated with soil salinity, NO3-N, and pH, while AOB communities were only significantly associated with NO3-N and pH. These results suggest that salinity was the dominant factor affecting the growth of ammonia-oxidizing microorganisms and community structure. These results can provide a scientific basis for further exploring the response mechanism of ammonia-oxidizing microorganisms and their roles in nitrogen transformation in alluvial grey desert soils of arid areas.


Subject(s)
Agricultural Irrigation/methods , Ammonia/chemistry , Archaea/metabolism , Bacteria/metabolism , Nitrification , Saline Waters/chemistry , Soil Microbiology , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Copy Number Variations , Ecosystem
13.
Huan Jing Ke Xue ; 41(1): 420-429, 2020 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-31854945

ABSTRACT

A five year field experiment was conducted to evaluate the effect of continually returning cotton straw or biochar on microbial metabolic function and bacterial community composition of soil in a cotton field under drip irrigation conditions. The experiment involved three treatments:control (single application of chemical fertilizer, CK), cotton straw (returning of cotton straw plus chemical fertilizer application, ST), and biochar (returning of cotton straw biochar plus chemical fertilizer application, BC). The returning of cotton straw and biochar both significantly increased soil organic matter, total nitrogen, and available nutrients, but the effect of returning biochar was more significant. The carbon source metabolic activities of the soil in the ST treatment was the highest, followed by the BC treatment, which was significantly higher than of that in the CK treatment. The returning of cotton straw promoted the metabolism of carbohydrate and amine carbon sources, while biochar significantly increased the metabolism of polymer carbon sources. Compared with the CK treatment, the ST treatment significantly increased the phylum of Proteobacteria, Actinobacteria, Bacteroides, and the family of Xanthomonadaceae, Acidobacteriaceae, Microbacteriaceae, and Cytophagaceae. The BC treatment significantly increased the phylum of Acidobacteria, Gemmatimonadetes, Nitrospirae, and the family of Blastocatellaceae (subgroup 4), Gemmatimonadaceae, and Nitrosomonadaceae. The correlation analysis showed that there were significant positive correlations between the relative abundances of Xanthomonadaceae and Acidobacteriaceae and the carbon source metabolic activities of carbohydrates, amino acids, carboxylic acids, and amines. The relative abundances of Microbacteriaceae and Cytophagaceae were positively correlated with carbohydrates and amines. There was a significant positive correlation between the relative abundance of Blastocatellaceae (subgroup 4), Gemmatimonadaceae, Nitrosomonadaceae and the carbon metabolism of polymers. These results suggest that the continual returning of biochar increased soil nutrients, change bacterial community composition, and promoted the metabolic activity of polymer carbon sources in the drip-irrigated cotton field.


Subject(s)
Bacteria/metabolism , Charcoal , Soil Microbiology , Agricultural Irrigation , Bacteria/classification , Fertilizers , Gossypium/growth & development
14.
PLoS One ; 14(12): e0226776, 2019.
Article in English | MEDLINE | ID: mdl-31869397

ABSTRACT

Soil salinity is a major abiotic stress factor that limits cotton production worldwide. To improve salt tolerance in cotton, an in-depth understanding of ionic balance is needed. In this study, a pot experiment using three levels of soil salinity (0%, 0.2%, and 0.4%, represented as CK, SL, and SH, respectively) and two cotton genotypes (salt-tolerant genotype: L24; salt-sensitive genotype: X45) was employed to investigate how sodium chloride (NaCl) stress effects cotton growth, ion distribution, and transport, as well as to explore the related mechanism. The results showed that SL treatment mainly inhibited shoot growth, while SH treatment caused more extensive impairment to roots and shoots. The growth inhibition ratio of NaCl stress on X45 was more marked than that of L24. Under NaCl stress, the Na concentration in the roots, stems and leaves significantly increased, whereas the K, Cu, B, and Mo concentration in roots, as well as Mg and S concentrations in the leaves, significantly decreased. Under salt stress conditions, salt-tolerant cotton plants can store Na in the leaves, and as a result, a larger amount of minerals (e.g., Cu, Mo, Si, P, and B) tend to transport to the leaves. By contrast, salt-sensitive varieties tend to accumulate certain minerals (e.g., Ca, P, Mg, S, Mn, Fe, Cu, B, Mo, and Si) in the roots. Most genes related to ion transport and homeostasis were upregulated in L24, but not in X45. The expression level of GhSOS1 in X45 was higher than L24, but GhNHX1 in L24 was higher than X45. Our findings suggest that the two varieties response to salt stress differently; for X45 (salt-sensitive), the response is predominantly governed by Na+ efflux, whereas for L24 (salt-tolerant), vacuolar sequestration of Na+ is the major mechanism. The expression changes of the genes encoding the ion transporters may partially explain the genotypic difference in leaf ion accumulation under salt stress conditions.


Subject(s)
Gene Expression Regulation, Plant , Gossypium/genetics , Salt-Tolerant Plants/genetics , Transcriptome , Gossypium/growth & development , Gossypium/physiology , Ion Transport , Ions/metabolism , Plant Proteins/genetics , Salinity , Salt Stress , Salt-Tolerant Plants/growth & development , Salt-Tolerant Plants/physiology , Sodium Chloride/metabolism
15.
Huan Jing Ke Xue ; 33(12): 4088-93, 2012 Dec.
Article in Chinese | MEDLINE | ID: mdl-23379127

ABSTRACT

Compared to drinking water or groundwater, reclaimed water contains more salts. Therefore, the effects of application of reclaimed water on the soil salinity have received great attentions. To evaluate the potential risks posed by long-term reclaimed water irrigation, we collected surface soil samples from urban green lands and suburban farmlands of Beijing represented different irrigation durations. The electrical conductivity (EC) and sodium adsorption ratio (SAR) in soils were measured subsequently. Both EC1:5 and SAR1.5 from the green land and farmland soils irrigated with reclaimed water were significantly higher than those of control treatments (drinking water or groundwater irrigation). The EC1:5 values increased by 12.4% and 84.2% than control treatments in the greenland and farmland, respectively. The SAR1:5 values increased by 64.5% and 145.8% than control treatments, respectively. No significant differences of both EC1:5 and SAR1:5 were found between of 0-10 cm and 10-20 cm soil layer. A slight decrease of soil porosity was observed. The field investigation suggested there was a high potential of soil salinization under long-term reclaimed water irrigation. Proper management practices should be implemented to minimize the soil salinity accumulation risk when using reclaimed water for irrigation in Beijing.


Subject(s)
Agricultural Irrigation/methods , Poaceae/growth & development , Sodium Chloride/analysis , Soil/chemistry , Wastewater/chemistry , China , Crops, Agricultural/growth & development , Environmental Monitoring , Risk Assessment , Salinity , Waste Disposal, Fluid/methods , Wastewater/analysis
16.
Huan Jing Ke Xue ; 33(12): 4081-7, 2012 Dec.
Article in Chinese | MEDLINE | ID: mdl-23379126

ABSTRACT

The physicochemical properties of soils might be changed under the long-term reclaimed water irrigation. Its effects on soil biological activities have received great attentions. We collected surface soil samples from urban green spaces and suburban farmlands of Beijing. Soil microbial biomass carbon (SMBC), five types of soil enzyme activities (urease, alkaline phosphatase, invertase, dehydrogenase and catalase) and physicochemical indicators in soils were measured subsequently. SMBC and enzyme activities from green land soils irrigated with reclaimed water were higher than that of control treatments using drinking water, but the difference is not significant in farmland. The SMBC increased by 60.1% and 14.2% than those control treatments in 0-20 cm soil layer of green land and farmland, respectively. Compared with their respective controls, the activities of enzymes in 0-20 cm soil layer of green land and farmland were enhanced by an average of 36.7% and 7.4%, respectively. Investigation of SMBC and enzyme activities decreased with increasing of soil depth. Significantly difference was found between 0-10 cm and 10-20 cm soil layer in green land. Soil biological activities were improved with long-term reclaimed water irrigation in Beijing.


Subject(s)
Agricultural Irrigation/methods , Soil Microbiology , Soil/chemistry , Urease/metabolism , Wastewater/analysis , Alkaline Phosphatase/metabolism , Biomass , Carbon/metabolism , China , Environmental Monitoring , Poaceae/growth & development , Waste Disposal, Fluid/methods , Wastewater/chemistry , beta-Fructofuranosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL