Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
ALTEX ; 39(3): 367­387, 2022.
Article in English | MEDLINE | ID: mdl-35229877

ABSTRACT

The need for reliable, sensitive (developmental) neurotoxicity testing of chemicals has steadily increased. Given the limited capacities for routine testing according to accepted regulatory guidelines, there is potential risk to human health and the environment. Most toxicity studies are based on mammalian test systems, which have been questioned for low sensitivity, limited relevance for humans, and animal welfare considerations. This increased the need for alternative models, one of which is the zebrafish (Danio rerio) embryo. This study assessed selected neonicotinoids at sub-lethal concentrations for their effects on embryonic development and behavior. The fish embryo acute toxicity test (OECD TG 236) determined the lowest observable effective concentrations, which were used as the highest test concentrations in subsequent behavioral assays. In the FET test, no severe compound-induced sublethal effects were seen at < 100 µM. In the coiling assay, exposure to ≥ 1.25 µM nicotine (positive control) affected both the burst duration and burst count per minute, whereas ≥ 50 µM thiacloprid affected the mean burst duration. Exposure to ≥ 50 µM acetamiprid and imidacloprid induced significant alterations in both mean burst duration and burst count per minute. In the swimming assay, 100 µM acetamiprid induced alterations in the frequency and extent of movements, whilst nicotine exposure only induced non-significant changes. All behavioral changes could be correlated to findings in mammalian studies. Given the quest for alternative test methods of (developmental) neurotoxicity, zebrafish embryo behavior testing could be integrated into a future tiered testing scheme.


Subject(s)
Embryo, Nonmammalian , Zebrafish , Animal Testing Alternatives , Animals , Embryonic Development , Humans , Mammals , Neonicotinoids/toxicity , Nicotine/toxicity
2.
EFSA J ; 19(10): e06877, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34712366

ABSTRACT

This Opinion assesses the biological relevance of the non-monotonic dose responses (NMDR) identified in a previous EFSA External Report (Beausoleil et al., 2016) produced under GP/EFSA/SCER/2014/01 and the follow-up probabilistic assessment (Chevillotte et al., 2017a,b), focusing on the in vivo data sets fulfilling most of the checkpoints of the visual/statistical-based analysis identified in Beausoleil et al. (2016). The evaluation was completed with cases discussed in EFSA assessments and the update of the scientific literature. Observations of NMDR were confirmed in certain studies and are particularly relevant for receptor-mediated effects. Based on the results of the evaluation, the Opinion proposes an approach to be applied during the risk assessment process when apparent non-monotonicity is observed, also providing advice on specific elements to be considered to facilitate the assessment of NMDR in EFSA risk assessments. The proposed approach was applied to two case studies, Bisphenol A and bis(2-ethylhexyl phthalate (DEHP) and these evaluations are reported in dedicated annexes. Considering the potential impact of NMDRs in regulatory risk assessment, the Scientific Committee recommends a concerted international effort on developing internationally agreed guidance and harmonised frameworks for identifying and addressing NMDRs in the risk assessment process.

3.
EFSA J ; 19(8): e06768, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34377190

ABSTRACT

The EFSA has updated the Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain, human and animal health. It covers the application areas within EFSA's remit, including novel foods, food contact materials, food/feed additives and pesticides. The updated guidance, now Scientific Committee Guidance on nano risk assessment (SC Guidance on Nano-RA), has taken account of relevant scientific studies that provide insights to physico-chemical properties, exposure assessment and hazard characterisation of nanomaterials and areas of applicability. Together with the accompanying Guidance on Technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles (Guidance on Particle-TR), the SC Guidance on Nano-RA specifically elaborates on physico-chemical characterisation, key parameters that should be measured, methods and techniques that can be used for characterisation of nanomaterials and their determination in complex matrices. The SC Guidance on Nano-RA also details aspects relating to exposure assessment and hazard identification and characterisation. In particular, nanospecific considerations relating to in vitro/in vivo toxicological studies are discussed and a tiered framework for toxicological testing is outlined. Furthermore, in vitro degradation, toxicokinetics, genotoxicity, local and systemic toxicity as well as general issues relating to testing of nanomaterials are described. Depending on the initial tier results, additional studies may be needed to investigate reproductive and developmental toxicity, chronic toxicity and carcinogenicity, immunotoxicity and allergenicity, neurotoxicity, effects on gut microbiome and endocrine activity. The possible use of read-across to fill data gaps as well as the potential use of integrated testing strategies and the knowledge of modes or mechanisms of action are also discussed. The Guidance proposes approaches to risk characterisation and uncertainty analysis.

4.
EFSA J ; 19(8): e06770, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34386097

ABSTRACT

The EFSA Scientific Committee was asked to provide guidance on the most appropriate in vivo tests to follow up on positive in vitro results for aneugenicity, and on the approach to risk assessment for substances that are aneugenic but not clastogenic nor causing gene mutations. The Scientific Committee confirmed that the preferred approach is to perform an in vivo mammalian erythrocyte micronucleus test with a relevant route of administration. If this is positive, it demonstrates that the substance is aneugenic in vivo. A negative result with evidence that the bone marrow is exposed to the test substance supports a conclusion that aneugenic activity is not expressed in vivo. If there is no evidence of exposure to the bone marrow, a negative result is viewed as inconclusive and further studies are required. The liver micronucleus assay, even though not yet fully validated, can provide supporting information for substances that are aneugenic following metabolic activation. The gastrointestinal micronucleus test, conversely, to be further developed, may help to assess aneugenic potential at the initial site of contact for substances that are aneugenic in vitro without metabolic activation. Based on the evidence in relation to mechanisms of aneugenicity, the Scientific Committee concluded that, in principle, health-based guidance values can be established for substances that are aneugenic but not clastogenic nor causing gene mutations, provided that a comprehensive toxicological database is available. For situations in which the toxicological database is not sufficient to establish health-based guidance values, some approaches to risk assessment are proposed. The Scientific Committee recommends further development of the gastrointestinal micronucleus test, and research to improve the understanding of aneugenicity to support risk assessment.

5.
ALTEX ; 38(4): 615-635, 2021.
Article in English | MEDLINE | ID: mdl-34114044

ABSTRACT

Read-across approaches are considered key in moving away from in vivo animal testing towards addressing data-gaps using new approach methods (NAMs). Ample successful examples are still required to substantiate this strategy. Here we present and discuss the learnings from two OECD IATA endorsed read-across case studies. They involve two classes of pesticides ­ rotenoids and strobilurins ­ each having a defined mode-of-action that is assessed for its neurological hazard by means of an AOP-based testing strategy coupled to toxicokinetic simulations of human tissue concentrations. The endpoint in question is potential mitochondrial respiratory chain mediated neurotoxicity, specifically through inhibition of complex I or III. An AOP linking inhibition of mitochondrial respiratory chain complex I to the degeneration of dopaminergic neurons formed the basis for both cases but was deployed in two different regulatory contexts. The two cases also exemplify several different read-across concepts: analogue versus category approach, consolidated versus putative AOP, positive versus negative prediction (i.e., neurotoxicity versus low potential for neurotoxicity), and structural versus biological similarity. We applied a range of NAMs to explore the toxicodynamic properties of the compounds, e.g., in silico docking as well as in vitro assays and readouts ­ including transcriptomics ­ in various cell systems, all anchored to the relevant AOPs. Interestingly, although some of the data addressing certain elements of the read-across were associated with high uncertainty, their impact on the overall read-across conclusion remained limited. Coupled to the elaborate regulatory review that the two cases underwent, we propose some generic learnings of AOP-based testing strategies supporting read-across.


Subject(s)
Neurotoxicity Syndromes , Pesticides , Animals , Computer Simulation , Humans , Neurotoxicity Syndromes/etiology , Risk Assessment , Uncertainty
6.
EFSA J ; 19(3): e06479, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33747231

ABSTRACT

This Statement presents a proposal for harmonising the establishment of Health-Based Guidance Values (HBGVs) for regulated products that are also nutrients. This is a recurrent issue for food additives and pesticides, and may occasionally occur for other regulated products. The Statement describes the specific considerations that should be followed for establishing the HBGVs during the assessment of a regulated product that is also a nutrient. It also addresses the elements to be considered in the intake assessment; and proposes a decision tree for ensuring a harmonised process for the risk characterisation of regulated products that are also nutrients. The Scientific Committee recommends the involvement of the relevant EFSA Panels and units, in order to ensure an integrated and harmonised approach for the hazard and risk characterisation of regulated products that are also nutrients, considering the intake from all relevant sources.

7.
EFSA J ; 18(4): e06087, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32874295

ABSTRACT

A retrospective acute cumulative risk assessment of dietary exposure to pesticide residues, supported by an uncertainty analysis based on expert knowledge elicitation, was conducted for two effects on the nervous system: brain and/or erythrocyte acetylcholinesterase inhibition, and functional alterations of the motor division. The pesticides considered in this assessment were identified and characterised in the scientific report on the establishment of cumulative assessment groups of pesticides for their effects on the nervous system. Cumulative exposure assessments were conducted through probabilistic modelling by EFSA and the Dutch National Institute for Public Health and the Environment (RIVM) using two different software tools and reported separately. These exposure assessments used monitoring data collected by Member States under their official pesticide monitoring programmes in 2014, 2015 and 2016 and individual consumption data from 10 populations of consumers from different countries and different age groups. This report completes the characterisation of cumulative risk, taking account of the available data and the uncertainties involved. For each of the 10 populations, it is concluded with varying degrees of certainty that cumulative exposure to pesticides that have the acute effects on the nervous system mentioned above does not exceed the threshold for regulatory consideration established by risk managers.

8.
EFSA J ; 18(4): e06088, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32874296

ABSTRACT

A retrospective chronic cumulative risk assessment of dietary exposure to pesticide residues, supported by an uncertainty analysis based on expert knowledge elicitation, was conducted for two effects on the thyroid, hypothyroidism and parafollicular cell (C-cell) hypertrophy, hyperplasia and neoplasia. The pesticides considered in this assessment were identified and characterised in the scientific report on the establishment of cumulative assessment groups of pesticides for their effects on the thyroid. Cumulative exposure assessments were conducted through probabilistic modelling by EFSA and the Dutch National Institute for Public Health and the Environment (RIVM) using two different software tools and reported separately. These exposure assessments used monitoring data collected by Member States under their official pesticide monitoring programmes in 2014, 2015 and 2016 and individual consumption data from 10 populations of consumers from different countries and different age groups. This report completes the characterisation of cumulative risk, taking account of the available data and the uncertainties involved. For each of the 10 populations, it is concluded with varying degrees of certainty that cumulative exposure to pesticides that have the chronic effects on the thyroid mentioned above does not exceed the threshold for regulatory consideration established by risk managers.

9.
ALTEX ; 37(4): 579-606, 2020.
Article in English | MEDLINE | ID: mdl-32369604

ABSTRACT

Read-across (RAx) translates available information from well-characterized chemicals to a substance for which there is a toxicological data gap. The OECD is working on case studies to probe general applicability of RAx, and several regulations (e.g., EU-REACH) already allow this procedure to be used to waive new in vivo tests. The decision to prepare a review on the state of the art of RAx as a tool for risk assessment for regulatory purposes was taken during a workshop with international experts in Ranco, Italy in July 2018. Three major issues were identified that need optimization to allow a higher regulatory acceptance rate of the RAx procedure: (i) the definition of similarity of source and target, (ii) the translation of biological/toxicological activity of source to target in the RAx procedure, and (iii) how to deal with issues of ADME that may differ between source and target. The use of new approach methodologies (NAM) was discussed as one of the most important innovations to improve the acceptability of RAx. At present, NAM data may be used to confirm chemical and toxicological similarity. In the future, the use of NAM may be broadened to fully characterize the hazard and toxicokinetic properties of RAx compounds. Concerning available guidance, documents on Good Read-Across Practice (GRAP) and on best practices to perform and evaluate the RAx process were identified. Here, in particular, the RAx guidance, being worked out by the European Commission's H2020 project EU-ToxRisk together with many external partners with regulatory experience, is given.


Subject(s)
Computer Simulation , Hazardous Substances/toxicity , Reproducibility of Results , Risk Assessment , Toxicology/legislation & jurisprudence , Animal Testing Alternatives , Animals , Humans , Internationality , Toxicology/methods
10.
Environ Int ; 134: 105267, 2020 01.
Article in English | MEDLINE | ID: mdl-31704565

ABSTRACT

The number of anthropogenic chemicals, manufactured, by-products, metabolites and abiotically formed transformation products, counts to hundreds of thousands, at present. Thus, humans and wildlife are exposed to complex mixtures, never one chemical at a time and rarely with only one dominating effect. Hence there is an urgent need to develop strategies on how exposure to multiple hazardous chemicals and the combination of their effects can be assessed. A workshop, "Advancing the Assessment of Chemical Mixtures and their Risks for Human Health and the Environment" was organized in May 2018 together with Joint Research Center in Ispra, EU-funded research projects and Commission Services and relevant EU agencies. This forum for researchers and policy-makers was created to discuss and identify gaps in risk assessment and governance of chemical mixtures as well as to discuss state of the art science and future research needs. Based on the presentations and discussions at this workshop we want to bring forward the following Key Messages.


Subject(s)
Risk Assessment , Complex Mixtures , Hazardous Substances , Humans
11.
ALTEX ; 36(3): 506, 2019.
Article in English | MEDLINE | ID: mdl-31329255

ABSTRACT

In this manuscript, which appeared in ALTEX 35 , 306-352 ( doi:10.14573/altex.1712081 ), the Acknowledgements should read: This work was supported by the Doerenkamp-Zbinden Foundation, EFSA, the BMBF, JPI-NutriCog-Selenius, and it has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 681002 (EU-ToxRisk).

12.
ALTEX ; 36(3): 507, 2019.
Article in English | MEDLINE | ID: mdl-31329257

ABSTRACT

In this manuscript, which appeared in ALTEX 36 , 154-160 ( doi:10.14573/altex.1901031 ), the Acknowledgements should read: This work was supported by the BMBF, the DAAD, the DFG (KoRS-CB), and it has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 681002 (EU-ToxRisk).

13.
ALTEX ; 36(1): 154-160, 2019.
Article in English | MEDLINE | ID: mdl-30633307

ABSTRACT

Some laboratory issues are taken for granted as they seem to be simple and not worth much thought. This applies to "concentrations of a chemical tested for bioactivity/toxicity". Can there be any issue about weighing a compound, diluting it in culture medium and calculating the final mass (or particle number)-to-volume ratio? We discuss here some basic concepts about concentrations and their units, addressing also differences between "dose" and "concentration". The problem of calculated nominal concentrations not necessarily corresponding to local concentrations (relevant for biological effects of a chemical) is highlighted. We present and exemplify different concentration measures, for instance those relying on weight, volume, or particle number of the test compound in a given volume; we also include normalizations to the mass, protein content, or cell number of the reference system. Interconversion is discussed as a major, often unresolved, issue. We put this into the context of the overall objective of defining concentrations, i.e., the determination of threshold values of bioactivity (e.g., an EC50). As standard approach for data display, the negative decadic logarithm of the molar concentrations (-log(M)) is recommended here, but arguments are also presented for exceptions from such a rule. These basic definitions are meant as a foundation for follow-up articles that examine the concepts of nominal, free, and intracellular concentrations to provide guidance on how to relate in vitro concentrations to in vivo doses by in vitro-to-in vivo extrapolation (IVIVE) in order to advance the use of new approach methods (NAM) in regulatory decision making.


Subject(s)
Toxicity Tests/methods , Animal Testing Alternatives , Animals , Cell Culture Techniques , Humans , Linguistics
14.
EFSA J ; 17(1): e05519, 2019 Jan.
Article in English | MEDLINE | ID: mdl-32626066

ABSTRACT

The EFSA Scientific Committee addressed in this document the peculiarities related to the genotoxicity assessment of chemical mixtures. The EFSA Scientific Committee suggests that first a mixture should be chemically characterised as far as possible. Although the characterisation of mixtures is relevant also for other toxicity aspects, it is particularly significant for the assessment of genotoxicity. If a mixture contains one or more chemical substances that are individually assessed to be genotoxic in vivo via a relevant route of administration, the mixture raises concern for genotoxicity. If a fully chemically defined mixture does not contain genotoxic chemical substances, the mixture is of no concern with respect to genotoxicity. If a mixture contains a fraction of chemical substances that have not been chemically identified, experimental testing of the unidentified fraction should be considered as the first option or, if this is not feasible, testing of the whole mixture should be undertaken. If testing of these fraction(s) or of the whole mixture in an adequately performed set of in vitro assays provides clearly negative results, the mixture does not raise concern for genotoxicity. If in vitro testing provides one or more positive results, an in vivo follow-up study should be considered. For negative results in the in vivo follow-up test(s), the possible limitations of in vivo testing should be weighed in an uncertainty analysis before reaching a conclusion of no concern with respect to genotoxicity. For positive results in the in vivo follow-up test(s), it can be concluded that the mixture does raise a concern about genotoxicity.

15.
EFSA J ; 17(6): e05708, 2019 Jun.
Article in English | MEDLINE | ID: mdl-32626331

ABSTRACT

The Scientific Committee confirms that the Threshold of Toxicological Concern (TTC) is a pragmatic screening and prioritisation tool for use in food safety assessment. This Guidance provides clear step-by-step instructions for use of the TTC approach. The inclusion and exclusion criteria are defined and the use of the TTC decision tree is explained. The approach can be used when the chemical structure of the substance is known, there are limited chemical-specific toxicity data and the exposure can be estimated. The TTC approach should not be used for substances for which EU food/feed legislation requires the submission of toxicity data or when sufficient data are available for a risk assessment or if the substance under consideration falls into one of the exclusion categories. For substances that have the potential to be DNA-reactive mutagens and/or carcinogens based on the weight of evidence, the relevant TTC value is 0.0025 µg/kg body weight (bw) per day. For organophosphates or carbamates, the relevant TTC value is 0.3 µg/kg bw per day. All other substances are grouped according to the Cramer classification. The TTC values for Cramer Classes I, II and III are 30 µg/kg bw per day, 9 µg/kg bw per day and 1.5 µg/kg bw per day, respectively. For substances with exposures below the TTC values, the probability that they would cause adverse health effects is low. If the estimated exposure to a substance is higher than the relevant TTC value, a non-TTC approach is required to reach a conclusion on potential adverse health effects.

16.
EFSA J ; 17(9): e05800, 2019 Sep.
Article in English | MEDLINE | ID: mdl-32626428

ABSTRACT

Cumulative assessment groups of pesticides have been established for five effects on the nervous system: brain and/or erythrocyte acetylcholinesterase inhibition, functional alterations of the motor, sensory and autonomic divisions, and histological neuropathological changes in neural tissue. Sources of uncertainties resulting from the methodological approach and from the limitations in available data and scientific knowledge have been identified and considered. This report supports the publication of a scientific report on cumulative risk assessment to pesticides affecting the nervous system, in which all uncertainties identified for either the exposure assessment or the establishment of the cumulative assessment groups are incorporated into a consolidated risk characterisation.

17.
EFSA J ; 17(9): e05801, 2019 Sep.
Article in English | MEDLINE | ID: mdl-32626429

ABSTRACT

Cumulative assessment groups of pesticides have been established for two specific effects on the thyroid: firstly hypothyroidism, and secondly parafollicular cell (C-cell) hypertrophy, hyperplasia and neoplasia. Sources of uncertainties resulting from the methodological approach and from the limitations in available data and scientific knowledge have been identified and considered. This report supports the publication of a scientific report on cumulative risk assessment to pesticides affecting the thyroid, in which all uncertainties identified for either the exposure assessment or the establishment of the cumulative assessment groups are incorporated into a consolidated risk characterisation.

18.
EFSA J ; 17(Suppl 1): e170712, 2019 Jul.
Article in English | MEDLINE | ID: mdl-32626449

ABSTRACT

The current/traditional human health risk assessment paradigm is challenged by recent scientific and technical advances, and ethical demands. The current approach is considered too resource intensive, is not always reliable, can raise issues of reproducibility, is mostly animal based and does not necessarily provide an understanding of the underlying mechanisms of toxicity. From an ethical and scientific viewpoint, a paradigm shift is required to deliver testing strategies that enable reliable, animal-free hazard and risk assessments, which are based on a mechanistic understanding of chemical toxicity and make use of exposure science and epidemiological data. This shift will require a new philosophy, new data, multidisciplinary expertise and more flexible regulations. Re-engineering of available data is also deemed necessary as data should be accessible, readable, interpretable and usable. Dedicated training to build the capacity in terms of expertise is necessary, together with practical resources allocated to education. The dialogue between risk assessors, risk managers, academia and stakeholders should be promoted further to understand scientific and societal needs. Genuine interest in taking risk assessment forward should drive the change and should be supported by flexible funding. This publication builds upon presentations made and discussions held during the break-out session 'Advancing risk assessment science - Human health' at EFSA's third Scientific Conference 'Science, Food and Society' (Parma, Italy, 18-21 September 2018).

19.
ALTEX ; 35(3): 306-352, 2018.
Article in English | MEDLINE | ID: mdl-29485663

ABSTRACT

Multiple non-animal-based test methods have never been formally validated. In order to use such new approach methods (NAMs) in a regulatory context, criteria to define their readiness are necessary. The field of developmental neurotoxicity (DNT) testing is used to exemplify the application of readiness criteria. The costs and number of untested chemicals are overwhelming for in vivo DNT testing. Thus, there is a need for inexpensive, high-throughput NAMs, to obtain initial information on potential hazards, and to allow prioritization for further testing. A background on the regulatory and scientific status of DNT testing is provided showing different types of test readiness levels, depending on the intended use of data from NAMs. Readiness criteria, compiled during a stakeholder workshop, uniting scientists from academia, industry and regulatory authorities are presented. An important step beyond the listing of criteria, was the suggestion for a preliminary scoring scheme. On this basis a (semi)-quantitative analysis process was assembled on test readiness of 17 NAMs with respect to various uses (e.g. prioritization/screening, risk assessment). The scoring results suggest that several assays are currently at high readiness levels. Therefore, suggestions are made on how DNT NAMs may be assembled into an integrated approach to testing and assessment (IATA). In parallel, the testing state in these assays was compiled for more than 1000 compounds. Finally, a vision is presented on how further NAM development may be guided by knowledge of signaling pathways necessary for brain development, DNT pathophysiology, and relevant adverse outcome pathways (AOP).


Subject(s)
Animal Testing Alternatives , Guidelines as Topic , Neurotoxicity Syndromes/etiology , Toxicity Tests/methods , Animals , Education , Humans , Risk Assessment , Toxicity Tests/trends
20.
EFSA J ; 16(6): e05286, 2018 Jun.
Article in English | MEDLINE | ID: mdl-32625927

ABSTRACT

Following a request from the European Commission, the EFSA Panel on Plant Protection Products and their Residues (PPR Panel) prepared a scientific opinion to provide a comprehensive evaluation of pesticide residues in foods for infants and young children. In its approach to develop this scientific opinion, the EFSA PPR Panel took into account, among the others, (i) the relevant opinions of the Scientific Committee for Food setting a default maximum residue level (MRL) of 0.01 mg/kg for pesticide residues in foods for infants and young children; (ii) the recommendations provided by EFSA Scientific Committee in a guidance on risk assessment of substances present in food intended for infants below 16 weeks of age; (iii) the knowledge on organ/system development in infants and young children. For infants below 16 weeks of age, the EFSA PPR Panel concluded that pesticide residues at the default MRL of 0.01 mg/kg for food for infants and young children are not likely to result in an unacceptable exposure for active substances for which a health-based guidance value (HBGV) of 0.0026 mg/kg body weight (bw) per day or higher applies. Lower MRLs are recommended for active substances with HBGVs below this value. For infants above 16 weeks of age and young children, the established approach for setting HBGVs is considered appropriate. For infants below 16 weeks of age the approach may not be appropriate and the application of the EFSA guidance on risk assessment of substances present in food intended for infants below 16 weeks of age is recommended. The contribution of conventional food to the total exposure to pesticide residues is much higher than that from foods intended for infants and young children. Because of the increased intake of conventional food by young children, these have the highest exposure to pesticide residues, whereas infants 3-6 months of age generally have lower exposure. The impact of cumulative exposure to pesticide residues on infants and young children is not different from the general population and the EFSA cumulative risk assessment methodology is also applicable to these age groups. Residue definitions established under Regulation (EC) No 396/2005 are in general considered appropriate also for foods for infants and young children. However, based on a tier 1 analysis of the hydrolysis potential of pesticides simulating processing, the particular appropriateness of existing residue definitions for monitoring to cover processed food, both intended for infants and young children as well as conventional food, is questionable.

SELECTION OF CITATIONS
SEARCH DETAIL
...