Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 13(11)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36354834

ABSTRACT

Manipulating the factors that influence progeny production and sex ratio in parasitoids can help maximize the production of quarantine bioassays and/or mass releases. In a series of experiments, we studied the effects of several factors on offspring production and sex ratio in the parasitoid Gryon aetherium (Hymenoptera: Scelionidae), a candidate biological control agent for Bagrada hilaris (Hemiptera: Pentatomidae). Progeny production was influenced by maternal age and dropped when females were 24 or 28 days old and decreased on the second day of exposure. Overall, the offspring sex ratio was highly variable in G. aetherium and was affected by the duration of exposure, with higher proportions of females emerging after one day of exposure than after two days, but was not affected by female density, female age/host deprivation, or temperature during oviposition. Progeny production was affected by the temperature during oviposition and was highest at 26.6 °C. The results indicate that production of G. aetherium can be maximized at one day of exposure, using females that are less than 24 d old, and at temperatures of around 26 °C.

2.
Environ Entomol ; 51(6): 1106-1112, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36314997

ABSTRACT

Pachycrepoideus vindemiae (Rondani) (Hymenoptera: Pteromalidae) and Trichopria drosophilae (Perkins) (Hymenoptera: Diapriidae) are two cosmopolitan and generalist pupal parasitoids that are among a few of the resident parasitoids in North America capable of attacking Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), an invasive pest of small and soft fruit crops worldwide. Ganaspis brasiliensis (Ihering) is a specialist larval parasitoid of D. suzukii that was recently approved for biological control introduction against D. suzukii in the USA. As a solitary koinobiont species, G. brasiliensis oviposits in the host larva but emerges as an adult from the host puparium. This study investigated the discrimination ability and parasitism success by the pupal parasitoids towards D. suzukii pupae previously parasitized by G. brasiliensis, to examine whether interactions with resident parasitoids will affect G. brasiliensis after it is released in the USA. We found preliminary evidence that neither pupal parasitoid could discriminate towards D. suzukii pupae parasitized by early instars of G. brasiliensis. Pachycrepoideus vindemiae was able to successfully develop on D. suzukii pupae containing all preimaginal stages of G. brasiliensis, although parasitism success was significantly higher on those bearing later rather than early stages of G. brasiliensis. Trichopria drosophilae was only able to successfully develop on D. suzukii puparia containing early instars of G. brasiliensis. These results suggest that D. suzukii parasitized by the larval parasitoid could be subsequently attacked by the pupal parasitoids, possibly affecting the success of G. brasiliensis releases.


Subject(s)
Hymenoptera , Animals , Pupa , Drosophila , Larva , North America
3.
J Econ Entomol ; 114(2): 611-619, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33595640

ABSTRACT

Two egg parasitoids from Pakistan, Gryon sp. nr. gonikopalense Sharma (Hymenoptera: Scelionidae) and Trissolcus hyalinipennis Rajmohana & Narendran (Hymenoptera: Scelionidae), are currently being investigated as potential classical biocontrol agents for Bagrada hilaris Burmeister. The former is the most promising because of its ability to attack B. hilaris eggs in soil, but the latter was recently discovered in California. This study detailed the patch use and oviposition behavior of both species and assessed their relative foraging efficiency. We also investigated possible competitive interactions by assessing 1) the occurrence of intra- and interspecific host discrimination, 2) mutual interference between females (extrinsic competition), 3) the outcome of multiparasitism (intrinsic competition), and 4) the effect of competition on host suppression. Our results showed that T. hyalinipennis females tended to probe repeatedly in the same hosts leading to longer host patch time and lower foraging efficiency. Both species avoided conspecific superparasitism, but not multiparasitism. When the two species foraged simultaneously, G. sp. nr. gonikopalense seemed to be slightly superior in extrinsic competition, while neither species seemed to have an advantage in intrinsic competition. Also, neither species could develop as a facultative hyperparasitoid, but they inflicted non-reproductive mortality on eggs containing 4-d-old larvae of their competitor. Lastly, host mortality inflicted by G. sp. nr. gonikopalense and T. hyalinipennis when acting together appeared to be additive. These results suggest that the presence of T. hyalinipennis in California is unlikely to reduce G. sp. nr. gonikopalense efficiency, but will instead improve the biological control of B. hilaris.


Subject(s)
Hemiptera , Heteroptera , Hymenoptera , Animals , Biological Control Agents , Female , Host-Parasite Interactions , Pakistan
4.
Insects ; 11(3)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32110919

ABSTRACT

The olive psyllid, Euphyllura olivina, is a newly invasive species to California with the potential to become an economical pest if it reaches the olive production regions of California's Central Valley. Here, we report on surveys undertaken in California to assess the psyllid's current distribution and the occurrence of parasitism. Additionally, we present results of foreign collections of its parasitoids and initial non-target studies of a possible biological control agent, the Mediterranean parasitoid Psyllaephagus euphyllurae. The current distribution of the psyllid appears to be limited to the California coast between Monterey and San Diego; there have been no reports of infestations on olives in the major production areas of central and northern California. Psyllaephagus euphyllurae was the major primary parasitoid found in our foreign collections. The potential non-target impact of P. euphyllurae was tested on three native North American psyllid species: Neophyllura arctostaphyli, Euglyptoneura nr. robusta, and Calophya nigrella. No P. euphyllurae developed on the non-target species during no-choice tests. Behavioral observations in choice tests confirmed no attack on the non-target hosts, although the parasitoid did remain longer on N. arctostaphyli-infested manzanita plants, and revealed no host feeding behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...