Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 11(6): e0138823, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37819113

ABSTRACT

IMPORTANCE: Human-infecting Cyclospora spp. cause gastrointestinal distress among healthy individuals contributing to morbidity and putting stress on the economics of countries and companies in the form of produce recalls. Accessible and easy-to-use diagnostic tools available to a wide variety of laboratories would aid in the early detection of possible outbreaks of cyclosporiasis. This, in turn, will assist in the timely traceback investigation to the suspected source of an outbreak by informing the smallest possible recall and protecting consumers from contaminated produce. This manuscript describes two novel detection methods with improved performance for the causative agents of cyclosporiasis when compared to the currently used 18S assay.


Subject(s)
Cyclospora , Cyclosporiasis , Humans , Cyclospora/genetics , Cyclosporiasis/diagnosis , Cyclosporiasis/epidemiology , DNA, Protozoan , Disease Outbreaks , Feces
2.
Diagn Microbiol Infect Dis ; 107(2): 116030, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37572510

ABSTRACT

Cyclosporiasis is a foodborne diarrheal illness caused by the parasite Cyclospora cayetanensis. The BioFire® FilmArray® gastrointestinal (FilmArray GI) panel is a common method for diagnosing cyclosporiasis from clinical stool samples. The currently published limit of detection (LOD) of this panel is in genome equivalents; however, it is unclear how this relates to the number of C. cayetanensis oocysts in a clinical sample. In this study, we developed a technique to determine the LOD in terms of oocysts, using a cell sorter to sort 1 to 50 C. cayetanensis oocyst(s) previously purified from three human stool sources. We found the FilmArray GI panel detected samples with ≥20 C. cayetanensis oocysts in 100% of replicates, with varying detection among samples with 1, 5, or 10 C. cayetanensis oocysts. This method provides a parasitologically relevant LOD that should enable comparison among C. cayetanensis detection techniques, including the FilmArray GI panel.


Subject(s)
Cyclospora , Cyclosporiasis , Parasites , Animals , Humans , Cyclospora/genetics , Cyclosporiasis/diagnosis , Cyclosporiasis/parasitology , Limit of Detection , Feces/parasitology , Oocysts/genetics
3.
Parasitology ; 150(3): 269-285, 2023 03.
Article in English | MEDLINE | ID: mdl-36560856

ABSTRACT

The apicomplexan parasite Cyclospora cayetanensis causes seasonal foodborne outbreaks of the gastrointestinal illness cyclosporiasis. Prior to the coronavirus disease-2019 pandemic, annually reported cases were increasing in the USA, leading the US Centers for Disease Control and Prevention to develop a genotyping tool to complement cyclosporiasis outbreak investigations. Thousands of US isolates and 1 from China (strain CHN_HEN01) were genotyped by Illumina amplicon sequencing, revealing 2 lineages (A and B). The allelic composition of isolates was examined at each locus. Two nuclear loci (CDS3 and 360i2) distinguished lineages A and B. CDS3 had 2 major alleles: 1 almost exclusive to lineage A and the other to lineage B. Six 360i2 alleles were observed ­ 2 exclusive to lineage A (alleles A1 and A2), 2 to lineage B (B1 and B2) and 1 (B4) was exclusive to CHN_HEN01 which shared allele B3 with lineage B. Examination of heterozygous genotypes revealed that mixtures of A- and B-type 360i2 alleles occurred rarely, suggesting a lack of gene flow between lineages. Phylogenetic analysis of loci from whole-genome shotgun sequences, mitochondrial and apicoplast genomes, revealed that CHN_HEN01 represents a distinct lineage (C). Retrospective examination of epidemiologic data revealed associations between lineage and the geographical distribution of US infections plus strong temporal associations. Given the multiple lines of evidence for speciation within human-infecting Cyclospora, we provide an updated taxonomic description of C. cayetanensis, and describe 2 novel species as aetiological agents of human cyclosporiasis: Cyclospora ashfordi sp. nov. and Cyclospora henanensis sp. nov. (Apicomplexa: Eimeriidae).


Subject(s)
COVID-19 , Cyclospora , Cyclosporiasis , Humans , Cyclosporiasis/epidemiology , Cyclosporiasis/parasitology , Phylogeny , Retrospective Studies , Feces/parasitology
4.
J Infect Dis ; 225(12): 2176-2180, 2022 06 15.
Article in English | MEDLINE | ID: mdl-34606577

ABSTRACT

Cyclosporiasis is a diarrheal illness caused by the foodborne parasite Cyclospora cayetanensis. Annually reported cases have been increasing in the United States prompting development of genotyping tools to aid cluster detection. A recently developed Cyclospora genotyping system based on 8 genetic markers was applied to clinical samples collected during the cyclosporiasis peak period of 2020, facilitating assessment of its epidemiologic utility. While the system performed well and helped inform epidemiologic investigations, inclusion of additional markers to improve cluster detection was supported. Consequently, investigations have commenced to identify additional markers to enhance performance.


Subject(s)
Cyclospora , Cyclosporiasis , Salads , Cyclospora/genetics , Cyclosporiasis/diagnosis , Cyclosporiasis/epidemiology , Cyclosporiasis/parasitology , Disease Outbreaks , Genotype , Humans , United States/epidemiology
5.
Epidemiol Infect ; 149: e214, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34511150

ABSTRACT

Cyclosporiasis is an illness characterised by watery diarrhoea caused by the food-borne parasite Cyclospora cayetanensis. The increase in annual US cyclosporiasis cases led public health agencies to develop genotyping tools that aid outbreak investigations. A team at the Centers for Disease Control and Prevention (CDC) developed a system based on deep amplicon sequencing and machine learning, for detecting genetically-related clusters of cyclosporiasis to aid epidemiologic investigations. An evaluation of this system during 2018 supported its robustness, indicating that it possessed sufficient utility to warrant further evaluation. However, the earliest version of CDC's system had some limitations from a bioinformatics standpoint. Namely, reliance on proprietary software, the inability to detect novel haplotypes and absence of a strategy to select an appropriate number of discrete genetic clusters would limit the system's future deployment potential. We recently introduced several improvements that address these limitations and the aim of this study was to reassess the system's performance to ensure that the changes introduced had no observable negative impacts. Comparison of epidemiologically-defined cyclosporiasis clusters from 2019 to analogous genetic clusters detected using CDC's improved system reaffirmed its excellent sensitivity (90%) and specificity (99%), and confirmed its high discriminatory power. This C. cayetanensis genotyping system is robust and with ongoing improvement will form the basis of a US-wide C. cayetanensis genotyping network for clinical specimens.


Subject(s)
Cyclospora/genetics , Cyclosporiasis/diagnosis , Cyclosporiasis/epidemiology , Disease Outbreaks , Clinical Laboratory Techniques , Cluster Analysis , Cyclospora/classification , Cyclospora/isolation & purification , Cyclosporiasis/parasitology , DNA, Protozoan/genetics , Feces/parasitology , Genotype , Genotyping Techniques , Humans , Molecular Epidemiology , United States/epidemiology
6.
Epidemiol Infect ; 148: e172, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32741426

ABSTRACT

Outbreaks of cyclosporiasis, a food-borne illness caused by the coccidian parasite Cyclospora cayetanensis have increased in the USA in recent years, with approximately 2300 laboratory-confirmed cases reported in 2018. Genotyping tools are needed to inform epidemiological investigations, yet genotyping Cyclospora has proven challenging due to its sexual reproductive cycle which produces complex infections characterized by high genetic heterogeneity. We used targeted amplicon deep sequencing and a recently described ensemble-based distance statistic that accommodates heterogeneous (mixed) genotypes and specimens with partial genotyping data, to genotype and cluster 648 C. cayetanensis samples submitted to CDC in 2018. The performance of the ensemble was assessed by comparing ensemble-identified genetic clusters to analogous clusters identified independently based on common food exposures. Using these epidemiologic clusters as a gold standard, the ensemble facilitated genetic clustering with 93.8% sensitivity and 99.7% specificity. Hence, we anticipate that this procedure will greatly complement epidemiologic investigations of cyclosporiasis.


Subject(s)
Cyclospora/genetics , Cyclosporiasis/epidemiology , Cyclosporiasis/parasitology , Data Interpretation, Statistical , Multilocus Sequence Typing/methods , Cluster Analysis , Databases, Factual , Feces/parasitology , Genetic Markers , Haplotypes , Humans
7.
Parasite ; 27: 24, 2020.
Article in English | MEDLINE | ID: mdl-32275020

ABSTRACT

Cyclospora cayetanensis is an intestinal parasite responsible for the diarrheal illness, cyclosporiasis. Molecular genotyping, using targeted amplicon sequencing, provides a complementary tool for outbreak investigations, especially when epidemiological data are insufficient for linking cases and identifying clusters. The goal of this study was to identify candidate genotyping markers using a novel workflow for detection of segregating single nucleotide polymorphisms (SNPs) in C. cayetanensis genomes. Four whole C. cayetanensis genomes were compared using this workflow and four candidate markers were selected for evaluation of their genotyping utility by PCR and Sanger sequencing. These four markers covered 13 SNPs and resolved parasites from 57 stool specimens, differentiating C. cayetanensis into 19 new unique genotypes.


TITLE: Développement d'un flux de travail pour l'identification de marqueurs de génotypage nucléaire pour Cyclospora cayetanensis. ABSTRACT: Cyclospora cayetanensis est un parasite intestinal responsable de la cyclosporose, maladie diarrhéique. Le génotypage moléculaire, utilisant le séquençage ciblé des amplicons, fournit un outil complémentaire pour les enquêtes sur les épidémies, en particulier lorsque les données épidémiologiques sont insuffisantes pour relier les cas et identifier les grappes. Le but de cette étude était d'identifier des marqueurs candidats de génotypage à l'aide d'un nouveau flux de travail pour la détection des polymorphismes d'un seul nucléotide (SNP) différentiateurs dans les génomes de C. cayetanensis. Quatre génomes entiers de C. cayetanensis ont été comparés à l'aide de ce flux de travail et quatre marqueurs candidats ont été sélectionnés pour l'évaluation de leur utilité de génotypage par PCR et séquençage Sanger. Ces quatre marqueurs couvraient 13 SNP et ont résolu les parasites provenant de 57 spécimens de selles, différenciant C. cayetanensis en 19 nouveaux génotypes uniques.


Subject(s)
Cyclospora/genetics , DNA, Protozoan/genetics , Genome, Protozoan , Genotyping Techniques , Workflow , Cyclospora/classification , Genetic Markers , Molecular Biology/methods , Polymorphism, Single Nucleotide
8.
Freshw Sci ; 39(2): 292-308, 2020 May 05.
Article in English | MEDLINE | ID: mdl-35498625

ABSTRACT

Nutrient (nitrogen [N] and phosphorus [P]) pollution is a pervasive water quality issue in the USA for small streams and rivers. The effect of nutrients on the biotic condition of streams is often evaluated with biological indicators such as macroinvertebrate assemblages or periphyton assemblages, particularly diatoms. Molecular approaches facilitate the use of periphyton assemblages as bioindicators because periphyton is diverse and its composition as a whole, rather than just diatoms, soft-bodied algae, or any single group, may convey additional information about responses to nutrients. To further develop the concept that a taxonomically-broad evaluation of periphyton assemblages could be useful for developing stream bioindicators, we examined microbial assemblage composition with both 16S and 18S rRNA genes, enabling us to evaluate composition in 3 domains. We measured otherwise unknown nutrient responses of different periphyton groups in situ with experiments that used glass fiber filters to allow diffusion of amended nutrients into a stream. We deployed these experimental setups in 2 streams that differ in the extent of agricultural land-use in their catchments in the southeastern USA. Experiments consisted of controls, N amendments, P amendments, and both N and P amendments. Periphyton assemblages that grew on the filters differed significantly by stream, date or season, and nutrient treatment. Assemblage differences across treatments were more consistent among Bacteria and Archaea than among eukaryotes. Effects of nutrient amendments were more pronounced in the stream with less agricultural land use and, therefore, lower nutrient loading than in the stream with more agricultural land use and higher nutrient loading. Combined N and P amendments decreased species richness and evenness for Bacteria and Archaea by ∼36 and ∼9%, respectively, compared with controls. Indicator species analysis revealed that specific clades varied in their response to treatments. Indicators based on the responses of these indicator clades were related to nutrient treatments across sites and seasons. Analyses that included all the taxa in a domain did not resolve differences in responses to N vs P. Instead, better resolution was achieved with an analysis focused on diatoms, which responded more strongly to P than N. Overall, our results showed that in situ nutrient-diffusing substrate experiments are a useful approach for describing assemblage responses to nutrients in streams. This type of molecular approach may be useful to environmental agencies and stakeholders responsible for assessing and managing stream water quality and biotic condition.

9.
Parasit Vectors ; 11(1): 563, 2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30367668

ABSTRACT

BACKGROUND: Protozoan parasites such as Giardia duodenalis, Cryptosporidium spp., Cyclospora cayetanensis, Toxoplasma gondii and Entamoeba histolytica represent a great challenge to the systems producing water for human consumption because their cystic forms are persistent in the environment and resist to the disinfection methods conventionally used for their control. In this study, we investigated the presence of these protozoan pathogens in both raw and treated water samples used for the production of drinking water in Nariño Department, southwest Colombia. We collected 110 water samples (10 lof each sample) and analyzed them with real-time PCR (qPCR). qPCR-positive samples were genotyped with PCR and DNA sequencing. RESULTS: Giardia duodenalis was detected in 35/110 (31.8%) of the samples and Cryptosporidium spp. in 9/110 (8.2%) of the samples; no sample was positive for T. gondii, E. histolytica or C. cayetanensis. Giardia duodenalis was detected in samples of both raw water (Drinking Water Treatment Plants (DWTP): 47.83%;Drinking Water Rural Plants (DWRP): 18.42%) and water collected either after conventional physicochemical treatment (26.09%) or after disinfection by chlorine (50%), whereas Cryptosporidium spp. were only detected in raw waters (DWTP: 17.39%; DWRP: 13.16%). The two pathogens were detected in both types of treatment plants supplying water to urban areas and to rural zones. Analysis of gdh and tpi markers identified assemblages AI, AII and H of G. duodenalis, while analysis of the small subunit rRNA and gp60 markers of Cryptosporidium-positive samples identified C. parvum (Subtype IIcA5G3c), C. galli, C. molnari, Cryptosporidium sp. genotype II of bats and Cryptosporidium sp. genotype VIII of birds. CONCLUSIONS: The results obtained demonstrate the presence of protozoan parasites in the water of the study region, and the need to improve the surveillance systems for these pathogens and identify the corresponding sources of contamination.


Subject(s)
Cryptosporidiosis/parasitology , Cyclospora/classification , Drinking Water/parasitology , Giardia lamblia/classification , Giardiasis/parasitology , Toxoplasma/classification , Toxoplasmosis/parasitology , Colombia , Cyclospora/genetics , Cyclospora/isolation & purification , Genotype , Giardia lamblia/genetics , Giardia lamblia/isolation & purification , Humans , Toxoplasma/genetics , Toxoplasma/isolation & purification , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...