Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 31(3): 801-809, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36518078

ABSTRACT

The clinical impact of any therapy requires the product be safe and effective. Gammaretroviral vectors pose several unique risks, including inadvertent exposure to replication competent retrovirus (RCR) that can arise during vector manufacture. The US FDA has required patient monitoring for RCR, and the National Gene Vector Biorepository is an NIH resource that has assisted eligible investigators in meeting this requirement. To date, we have found no evidence of RCR in 338 pre-treatment and 1,595 post-treatment blood samples from 737 patients associated with 60 clinical trials. Most samples (75%) were obtained within 1 year of treatment, and samples as far out as 9 years after treatment were analyzed. The majority of trials (93%) were cancer immunotherapy, and 90% of the trials used vector products produced with the PG13 packaging cell line. The data presented here provide further evidence that current manufacturing methods generate RCR-free products and support the overall safety profile of retroviral gene therapy.


Subject(s)
Retroviridae , Virus Replication , Humans , Retroviridae/genetics , Genetic Vectors/genetics , Cell Line , Genetic Therapy/adverse effects
2.
Methods Mol Biol ; 2086: 181-194, 2020.
Article in English | MEDLINE | ID: mdl-31707676

ABSTRACT

Lentiviral vectors are being used in a growing number of clinical applications, including T cell immunotherapy for cancer. As this new technology moves forward, a safety concern is the inadvertent recombination and subsequent development of a replication-competent lentivirus (RCL) during the manufacture of the vector material. To assess this risk, regulators have required screening of T cell products infused into patients for RCL. Since vector particles have many of the proteins and nucleotide sequences found in RCL, a biologic assay has proven the most sensitive method for RCL detection. As regulators have required screening of up to 108 cells per T cell product, this method described a procedure for assessing RCL contamination of large-volume T cell products.


Subject(s)
Genetic Vectors/genetics , Immunotherapy, Adoptive/standards , Lentivirus/genetics , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes , Transduction, Genetic , Biological Assay , Cell Line , Clinical Trials as Topic , Humans , Immunotherapy, Adoptive/methods , Neoplasms/pathology , Quality Assurance, Health Care , Quality Control , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...