Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Chembiochem ; : e202300789, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613462

ABSTRACT

The human glucose-regulated protein GRP78 is a human chaperone that translocactes to the cell surface when cells are under stress. Theoretical studies suggested it could be involved in SARS-CoV-2 virus entry to cells. In this work, we used in vitro surface plasmon resonance-based assays to show that human GRP78 indeed binds to SARS-CoV-2 spike protein. We have designed and synthesised cyclic peptides based on the loop structure of amino acids 480-488 of the SARS-CoV-2 spike protein S1 domain from the Wuhan and Omicron variants and showed that both peptides bind to GRP78. Consistent with the greater infectiousness of the Omicron variant, the Omicron-derived peptide displays slower dissociation from the target protein. Both peptides significantly inhibit the binding of wild-type S1 protein to the human protein GRP78 suggesting that further development of these cyclic peptide motifs may provide a viable route to novel anti-SARS-CoV-2 agents.

2.
Peptides ; 173: 171139, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38142817

ABSTRACT

The recent COVID-19 pandemic shows the critical need for novel broad spectrum antiviral agents. Scorpion venoms are known to contain highly bioactive peptides, several of which have demonstrated strong antiviral activity against a range of viruses. We have generated the first annotated reference transcriptome for the Androctonus amoreuxi venom gland and used high performance liquid chromatography, transcriptome mining, circular dichroism and mass spectrometric analysis to purify and characterize twelve previously undescribed venom peptides. Selected peptides were tested for binding to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and inhibition of the spike RBD - human angiotensin-converting enzyme 2 (hACE2) interaction using surface plasmon resonance-based assays. Seven peptides showed dose-dependent inhibitory effects, albeit with IC50 in the high micromolar range (117-1202 µM). The most active peptide was synthesized using solid phase peptide synthesis and tested for its antiviral activity against SARS-CoV-2 (Lineage B.1.1.7). On exposure to the synthetic peptide of a human lung cell line infected with replication-competent SARS-CoV-2, we observed an IC50 of 200 nM, which was nearly 600-fold lower than that observed in the RBD - hACE2 binding inhibition assay. Our results show that scorpion venom peptides can inhibit the SARS-CoV-2 replication although unlikely through inhibition of spike RBD - hACE2 interaction as the primary mode of action. Scorpion venom peptides represent excellent scaffolds for design of novel anti-SARS-CoV-2 constrained peptides. Future studies should fully explore their antiviral mode of action as well as the structural dynamics of inhibition of target virus-host interactions.


Subject(s)
Animals, Poisonous , COVID-19 , Scorpion Venoms , Spike Glycoprotein, Coronavirus , Animals , Humans , SARS-CoV-2/metabolism , Scorpions/chemistry , Transcriptome , Proteomics , Pandemics , Peptides/metabolism , Antiviral Agents/pharmacology , Scorpion Venoms/chemistry , Protein Binding
3.
ACS Infect Dis ; 9(5): 1056-1063, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37132993

ABSTRACT

Dermal infections requiring treatment are usually treated with conventional antibiotics, but the rise of bacterial resistance to first-line antibiotics warrants alternative therapeutics. Here, we report that a backbone-cyclized antimicrobial peptide, CD4-PP, designed from the human host defense peptide LL-37, has strong direct antibacterial effects on antibiotic sensitive as well as resistant-type strains and clinical isolates of common skin pathogens in the low (<2) µM range. In addition, it influences innate immunity in keratinocytes, and treatment with CD4-PP is able to clear bacterial infections in infected keratinocytes. Additionally, CD4-PP treatment significantly reduces the wound area in a lawn of keratinocytes infected with MRSA. In conclusion, CD4-PP has the potential to serve as a future drug treating wounds infected with antibiotic-resistant bacteria.


Subject(s)
Antimicrobial Peptides , Skin , Humans , Anti-Bacterial Agents/pharmacology , Keratinocytes , Antimicrobial Cationic Peptides/pharmacology
4.
J Nat Prod ; 86(3): 566-573, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36917740

ABSTRACT

The subtilisin-like macrocyclase PatGmac is produced by the marine cyanobacterium Prochloron didemni. This enzyme is involved in the last step of the biosynthesis of patellamides, a cyanobactin type of ribosomally expressed and post-translationally modified cyclic peptides. PatGmac recognizes, cleaves, and cyclizes precursor peptides after a specific recognition motif comprised of a C-terminal tail with the sequence motif -AYDG. The result is the native macrocyclic patellamide, which has eight amino acid residues. Macrocyclase activity can be exploited by incorporating that motif in other short linear peptide precursors, which then are formed into head-to-tail cyclized peptides. Here, we explore the possibility of using PatGmac in the cyclization of peptides larger than the patellamides, namely, the PawS-derived peptide sunflower trypsin inhibitor-1 (SFTI-1) and the cyclotide kalata B1. These peptides fall under two distinct families of disulfide constrained macrocyclic plant peptides. They are both implicated as scaffolds for drug design due to their structures and unusual stability. We show that PatGmac can be used to efficiently cyclize the 14 amino acid residue long SFTI-1, but less so the 29 amino acid residue long kalata B1.


Subject(s)
Cyclotides , Cyclotides/chemistry , Cyclization , Peptides, Cyclic/chemistry , Amino Acids/metabolism , Trypsin/chemistry , Trypsin/metabolism
5.
Angew Chem Int Ed Engl ; 62(16): e202215979, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36815722

ABSTRACT

Aromatic prenyltransferases from cyanobactin biosynthetic pathways catalyse the chemoselective and regioselective intramolecular transfer of prenyl/geranyl groups from isoprene donors to an electron-rich position in these macrocyclic and linear peptides. These enzymes often demonstrate relaxed substrate specificity and are considered useful biocatalysts for structural diversification of peptides. Herein, we assess the isoprene donor specificity of the N1-tryptophan prenyltransferase AcyF from the anacyclamide A8P pathway using a library of 22 synthetic alkyl pyrophosphate analogues, of which many display reactive groups that are amenable to additional functionalization. We further used AcyF to introduce a reactive moiety into a tryptophan-containing cyclic peptide and subsequently used click chemistry to fluorescently label the enzymatically modified peptide. This chemoenzymatic strategy allows late-stage modification of peptides and is useful for many applications.


Subject(s)
Dimethylallyltranstransferase , Tryptophan , Tryptophan/chemistry , Peptides , Peptides, Cyclic/chemistry , Butadienes , Hemiterpenes , Dimethylallyltranstransferase/metabolism , Substrate Specificity
6.
Chem Commun (Camb) ; 58(86): 12054-12057, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36193595

ABSTRACT

Cyanobactins are linear and cyclic post-translationally modified peptides. Here we show that the prenyl-D-Arg-containing autumnalamide A is a member of the cyanobactin family. Biochemical assays demonstrate that the AutF prenyltransferase targets the guanidinium moiety in arginine and homoarginine and is a useful tool for biotechnological applications.


Subject(s)
Biosynthetic Pathways , Dimethylallyltranstransferase , Dimethylallyltranstransferase/chemistry , Dimethylallyltranstransferase/metabolism , Arginine/metabolism , Homoarginine/metabolism , Guanidine , Peptides, Cyclic/chemistry
8.
Molecules ; 25(4)2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32093030

ABSTRACT

As opposed to small molecules, macrocyclic peptides possess a large surface area and are recognised as promising candidates to selectively treat diseases by disrupting specific protein-protein interactions (PPIs). Due to the difficulty in predicting cyclopeptide conformations in solution, the de novo design of bioactive cyclopeptides remains significantly challenging. In this study, we used the combination of conformational analyses and molecular docking studies to design a new cyclopeptide inhibitor of the interaction between the human tumour necrosis factor alpha (TNFα) and its receptor TNFR-1. This interaction is a key in mediating the inflammatory response to tissue injury and infection in humans, and it is also an important causative factor of rheumatoid arthritis, psoriasis and inflammatory bowel disease. The solution state NMR structure of the cyclopeptide was determined, which helped to deduce its mode of interaction with TNFα. TNFα sensor cells were used to evaluate the biological activity of the peptide.


Subject(s)
Drug Design , Peptides, Cyclic , Tumor Necrosis Factor-alpha/antagonists & inhibitors , HEK293 Cells , Humans , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Protein Structure, Secondary , Structure-Activity Relationship
9.
Anal Biochem ; 592: 113583, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31945311

ABSTRACT

Improved health span and lifespan extension in a wide phylogenetic range of species is associated with the induction of the environmental cell stress response through a signalling pathway regulated by the transcription factor Nrf2. Phytochemicals which stimulate this response may form part of therapeutic interventions which stimulate endogenous cytoprotective mechanisms, thereby delaying the onset of age-related diseases and promoting healthy ageing in humans. In order to identify compounds that activate the Nrf2 pathway, a cell-based reporter system was established in HepG2 cells using a luciferase reporter gene under the control of the Nqo1 promoter. Sulforaphane, an isothiocyanate derived from cruciferous vegetables and a known activator of the Nrf2 pathway, was used to validate the reporter system. The transfected cell line HepG2 C1 was subsequently used to screen natural product libraries. Five compounds were identified as activating the bioluminescent reporter by greater than 5-fold. The two most potent compounds, MBC20 and MBC37, were further characterised and shown to stimulate endogenous cytoprotective gene and protein expression. The bioluminescent reporter system will allow rapid, in vitro identification of novel compounds that have the potential to improve health span through activation of the environmental stress response.


Subject(s)
Luminescent Measurements/methods , NF-E2-Related Factor 2/metabolism , Phytochemicals/pharmacology , Antioxidants/metabolism , Hep G2 Cells , Humans
10.
Methods Mol Biol ; 2012: 193-210, 2019.
Article in English | MEDLINE | ID: mdl-31161510

ABSTRACT

Cyclic peptides are an emerging class of therapeutics that can modulate targets not amenable to traditional small molecule intervention (e.g., protein-protein interactions). However, N-to-C macrocyclization of peptides is a challenging and often a low yielding chemical transformation. Several macrocyclases from cyanobactin biosynthetic clusters have been used to catalyze this reaction.This chapter provides practical guidance to the processes of heterologous expression and purification of these enzymes as well as performing in vitro biochemical reactions. Finally, approaches to recover the final product from an enzymatic reaction mixture are also discussed.


Subject(s)
Peptides, Cyclic/chemistry , Amino Acid Sequence , Catalysis , Cyclization , Escherichia coli/genetics , Gene Expression , Models, Molecular , Molecular Structure , Peptides, Cyclic/genetics , Peptides, Cyclic/isolation & purification , Protein Conformation , Recombinant Proteins
11.
Biochemistry ; 57(50): 6860-6867, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30452235

ABSTRACT

Aromatic prenylation is an important step in the biosynthesis of many natural products and leads to an astonishing diversity of chemical structures. Cyanobactin pathways frequently encode aromatic prenyltransferases that catalyze the prenylation of these macrocyclic and linear peptides. Here we characterized the anacyclamide ( acy) biosynthetic gene cluster from Anabaena sp. UHCC-0232. Partial reconstitution of the anacyclamide pathway, heterologous expression, and in vitro biochemical characterization demonstrate that the AcyF enzyme, encoded in the acy biosynthetic gene cluster, is a Trp N-prenyltransferase. Bioinformatic analysis suggests the monophyletic origin and rapid diversification of cyanobactin prenyltransferase enzymes and the multiple origins of N-1 Trp prenylation in prenylated natural products. The AcyF enzyme displayed high flexibility toward a range of Trp-containing substrates and represents an interesting new tool for biocatalytic applications.


Subject(s)
Dimethylallyltranstransferase/metabolism , Peptides, Cyclic/biosynthesis , Peptides, Cyclic/chemistry , Amino Acid Sequence , Anabaena/enzymology , Anabaena/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Products/chemistry , Biological Products/metabolism , Biosynthetic Pathways , Dimethylallyltranstransferase/genetics , Genes, Bacterial , Multigene Family , Phylogeny , Prenylation , Substrate Specificity , Tryptophan/chemistry
12.
Chem Commun (Camb) ; 53(77): 10656-10659, 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-28905052

ABSTRACT

Macrocyclic peptides have promising therapeutic potential but the scaling up of their chemical synthesis is challenging. The cyanobactin macrocyclase PatGmac is an efficient tool for production but is limited to substrates containing 6-11 amino acids and at least one thiazoline or proline. Here we report a new cyanobactin macrocyclase that can cyclize longer peptide substrates and those not containing proline/thiazoline and thus allows exploring a wider chemical diversity.


Subject(s)
Macrocyclic Compounds/chemical synthesis , Oscillatoria/enzymology , Peptides, Cyclic/chemical synthesis , Bacterial Proteins , Cyclization , Gene Expression Regulation, Bacterial/physiology , Gene Expression Regulation, Enzymologic/physiology , Molecular Dynamics Simulation , Oscillatoria/metabolism , Peptide Fragments , Substrate Specificity
13.
J Phys Chem Lett ; 8(10): 2310-2315, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28475844

ABSTRACT

An in silico computational technique for predicting peptide sequences that can be cyclized by cyanobactin macrocyclases, e.g., PatGmac, is reported. We demonstrate that the propensity for PatGmac-mediated cyclization correlates strongly with the free energy of the so-called pre-cyclization conformation (PCC), which is a fold where the cyclizing sequence C and N termini are in close proximity. This conclusion is driven by comparison of the predictions of boxed molecular dynamics (BXD) with experimental data, which have achieved an accuracy of 84%. A true blind test rather than training of the model is reported here as the in silico tool was developed before any experimental data was given, and no parameters of computations were adjusted to fit the data. The success of the blind test provides fundamental understanding of the molecular mechanism of cyclization by cyanobactin macrocyclases, suggesting that formation of PCC is the rate-determining step. PCC formation might also play a part in other processes of cyclic peptides production and on the practical side the suggested tool might become useful for finding cyclizable peptide sequences in general.


Subject(s)
Cyclization , Models, Molecular , Peptides, Cyclic/chemistry , Molecular Dynamics Simulation , Peptide Fragments , Probability
15.
J Antibiot (Tokyo) ; 70(4): 448-453, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27353167

ABSTRACT

The extremotolerant isolate H45 was one of several actinomycetes isolated from a high-altitude Atacama Desert soil collected in northwest Chile. The isolate was identified as a new Lentzea sp. using a combination of chemotaxonomic, morphological and phylogenetic properties. Large scale fermentation of the strain in two different media followed by chromatographic purification led to the isolation of six new diene and monoene glycosides named lentzeosides A-F, together with the known compound (Z)-3-hexenyl glucoside. The structures of the new compounds were confirmed by HRESIMS and NMR analyses. Compounds 1-6 displayed moderate inhibitory activity against HIV integrase.


Subject(s)
Actinomycetales/chemistry , HIV Integrase Inhibitors/pharmacology , HIV-1/drug effects , HIV-1/enzymology , Actinomycetales/classification , Actinomycetales/genetics , Altitude , Chile , Desert Climate , Fermentation , Magnetic Resonance Spectroscopy , RNA, Fungal/genetics , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Spectrometry, Mass, Electrospray Ionization
16.
Front Immunol ; 7: 452, 2016.
Article in English | MEDLINE | ID: mdl-27822214

ABSTRACT

The modulation of the immune system can have multiple applications such as cancer treatment, and a wide type of processes involving inflammation where the potent chemotactic agent cyclophilin A (Cyp A) is implicated. The Porifera phylum, in which Spongionella is encompassed, is the main producer of marine bioactive compounds. Four secondary metabolites obtained from Spongionella (Gracilin H, A, L, and Tetrahydroaplysulphurin-1) were described to hit Cyp A and to block the release of inflammation mediators. Based on these results, some role of Spongionella compounds on other steps of the signaling pathway mediated by this chemotactic agent can be hypothesized. In the present paper, we studied the effect of these four compounds on the surface membrane CD147 receptor expression, on the extracellular levels of Cyp A and on the ability to migrate of concanavalin (Con A)-activated T lymphocytes. Similar to a well-known immunosuppressive agent cyclosporine A (CsA), Gracilin H, A, L, and tetrahydroaplysulphurin-1 were able to reduce the CD147 membrane expression and to block the release of Cyp A to the medium. Besides, by using Cyp A as chemotactic agent, T cell migration was inhibited when cells were previously incubated with Gracilin A and Gracilin L. These positive results lead us to test the in vivo effect of Gracilin H and L in a mouse ear delayed hypersensitive reaction. Thus, both compounds efficiently reduce the ear swelling as well as the inflammatory cell infiltration. These results provide more evidences for their potential therapeutic application in immune-related diseases of Spongionella compounds.

17.
Acta Crystallogr D Struct Biol ; 72(Pt 11): 1174-1180, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27841750

ABSTRACT

Determination of protein crystal structures requires that the phases are derived independently of the observed measurement of diffraction intensities. Many techniques have been developed to obtain phases, including heavy-atom substitution, molecular replacement and substitution during protein expression of the amino acid methionine with selenomethionine. Although the use of selenium-containing methionine has transformed the experimental determination of phases it is not always possible, either because the variant protein cannot be produced or does not crystallize. Phasing of structures by measuring the anomalous diffraction from S atoms could in theory be almost universal since almost all proteins contain methionine or cysteine. Indeed, many structures have been solved by the so-called native sulfur single-wavelength anomalous diffraction (S-SAD) phasing method. However, the anomalous effect is weak at the wavelengths where data are normally recorded (between 1 and 2 Å) and this limits the potential of this method to well diffracting crystals. Longer wavelengths increase the strength of the anomalous signal but at the cost of increasing air absorption and scatter, which degrade the precision of the anomalous measurement, consequently hindering phase determination. A new instrument, the long-wavelength beamline I23 at Diamond Light Source, was designed to work at significantly longer wavelengths compared with standard synchrotron beamlines in order to open up the native S-SAD method to projects of increasing complexity. Here, the first novel structure, that of the oxidase domain involved in the production of the natural product patellamide, solved on this beamline is reported using data collected to a resolution of 3.15 Šat a wavelength of 3.1 Å. The oxidase is an example of a protein that does not crystallize as the selenium variant and for which no suitable homology model for molecular replacement was available. Initial attempts collecting anomalous diffraction data for native sulfur phasing on a standard macromolecular crystallography beamline using a wavelength of 1.77 Šdid not yield a structure. The new beamline thus has the potential to facilitate structure determination by native S-SAD phasing for what would previously have been regarded as very challenging cases with modestly diffracting crystals and low sulfur content.


Subject(s)
Bacterial Proteins/chemistry , Cyanothece/enzymology , Oxidoreductases/chemistry , Crystallization/methods , Crystallography, X-Ray/methods , Cyanothece/chemistry , Models, Molecular , Protein Conformation , Selenomethionine/chemistry
18.
Chemistry ; 22(37): 13089-97, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27389424

ABSTRACT

Cyclic peptides are a class of compounds with high therapeutic potential, possessing bioactivities including antitumor and antiviral (including anti-HIV). Despite their desirability, efficient design and production of these compounds has not been achieved to date. The catalytic mechanism of patellamide macrocyclization by the PatG macrocyclase domain has been computationally investigated by using quantum mechanics/molecular mechanics methodology, specifically ONIOM(M06/6-311++G(2d,2p):ff94//B3LYP/6-31G(d):ff94). The mechanism proposed herein begins with a proton transfer from Ser783 to His 618 and from the latter to Asp548. Nucleophilic attack of Ser783 on the substrate leads to the formation of an acyl-enzyme covalent complex. The leaving group Ala-Tyr-Asp-Gly (AYDG) of the substrate is protonated by the substrate's N terminus, leading to the breakage of the P1-P1' bond. Finally, the substrate's N terminus attacks the P1 residue, decomposing the acyl-enzyme complex forming the macrocycle. The formation and decomposition of the acyl-enzyme complex have the highest activation free energies (21.1 kcal mol(-1) and 19.8 kcal mol(-1) respectively), typical of serine proteases. Understanding the mechanism behind the macrocyclization of patellamides will be important to the application of the enzymes in the pharmaceutical and biotechnological industries.

19.
Pharmacol Res ; 107: 407-414, 2016 05.
Article in English | MEDLINE | ID: mdl-27041481

ABSTRACT

Marine sponges are found to be a wide source of bioactive compounds with different effects such as anti-inflammatory or anticancer actions among others. Cyclophilin A (Cyp A) is a target protein implicated in the mechanism of action of immunosuppressive compounds such as Cyclosporine A (CsA). In the present paper we studied the binding between 4 Spongionella compounds (Gracilins H, A, L and Tetrahydroaplysulphurin-1) and Cyp A immobilized over a CM5 sensor chip. Thus, we found that Spongionella compounds showed to have similar binding affinities than CsA with dissociation equilibrium constant in the range. Next, the effect of these Spongionella isolated compounds was tested over calcineurin phosphatase activity. The same than CsA, Gracilin H, A and Tetrahydroaplysulphurin-1 were able to inhibit phosphatase activity once the complex between Cyp A-CsA/Spongionella compounds was formed. The ability to avoid the dephosphorylation of NFATc1 was also checked in human T cells isolated from peripheral blood. First, cells were pre-treated with Spongionella compounds or CsA following by Concanavalin A (Con A) stimulation. In these conditions nuclear NFATc1 levels were diminished either by CsA or Gracilin A, L, and Tetrahydroaplysulphurin-1 treatment. Moreover, as happens with CsA due to the inhibition of NFATc1, Interleukine-2 (IL-2) released to the culture medium was significantly decreased with all Spongionella compounds. Results conclude that, Spongionella derivatives preserve T lymphocytes from activation modulating the same pathway than CsA. Thus, this mechanism of action suggests that these compounds could be interesting candidates in drug development as immunosuppressive or anti-inflammatory drugs.


Subject(s)
Cyclosporine/metabolism , Diterpenes/metabolism , Immunosuppressive Agents/metabolism , Porifera/metabolism , Animals , Cell Survival/drug effects , Cells, Cultured , Diterpenes/pharmacology , Humans , Interleukin-2/metabolism , NFATC Transcription Factors/metabolism , Phosphoric Monoester Hydrolases/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
20.
Angew Chem Int Ed Engl ; 55(11): 3596-9, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26846478

ABSTRACT

Cyanobactins are a rapidly growing family of linear and cyclic peptides produced by cyanobacteria. Kawaguchipeptins A and B, two macrocyclic undecapeptides reported earlier from Microcystis aeruginosa NIES-88, are shown to be products of the cyanobactin biosynthetic pathway. The 9 kb kawaguchipeptin (kgp) gene cluster was identified in a 5.26 Mb draft genome of Microcystis aeruginosa NIES-88. We verified that this gene cluster is responsible for the production of the kawaguchipeptins through heterologous expression of the kgp gene cluster in Escherichia coli. The KgpF prenyltransferase was overexpressed and was shown to prenylate C-3 of Trp residues in both linear and cyclic peptides in vitro. Our findings serve to further enhance the structural diversity of cyanobactins to include tryptophan-prenylated cyclic peptides.


Subject(s)
Dimethylallyltranstransferase/metabolism , Tryptophan/metabolism , Amino Acid Sequence , Dimethylallyltranstransferase/chemistry , Escherichia coli/genetics , Genome, Bacterial , Microcystis/genetics , Multigene Family
SELECTION OF CITATIONS
SEARCH DETAIL
...