Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 6(1): 1095, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898698

ABSTRACT

Bacterial capsular polysaccharides are important vaccine immunogens. However, the study of polysaccharide-specific immune responses has been hindered by technical restrictions. Here, we developed and validated a high-throughput method to analyse antigen-specific B cells using combinatorial staining with fluorescently-labelled capsular polysaccharide multimers. Concurrent staining of 25 cellular markers further enables the in-depth characterization of polysaccharide-specific cells. We used this assay to simultaneously analyse 14 Streptococcus pneumoniae or 5 Streptococcus agalactiae serotype-specific B cell populations. The phenotype of polysaccharide-specific B cells was associated with serotype specificity, vaccination history and donor population. For example, we observed a link between non-class switched (IgM+) memory B cells and vaccine-inefficient S. pneumoniae serotypes 1 and 3. Moreover, B cells had increased activation in donors from South Africa, which has high-incidence of S. agalactiae invasive disease, compared to Dutch donors. This assay allows for the characterization of heterogeneity in B cell immunity that may underlie immunization efficacy.


Subject(s)
Immunization , Vaccines , Flow Cytometry , Polysaccharides, Bacterial , Immunity
2.
Immunity ; 55(12): 2436-2453.e5, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36462503

ABSTRACT

The factors that influence survival during severe infection are unclear. Extracellular chromatin drives pathology, but the mechanisms enabling its accumulation remain elusive. Here, we show that in murine sepsis models, splenocyte death interferes with chromatin clearance through the release of the DNase I inhibitor actin. Actin-mediated inhibition was compensated by upregulation of DNase I or the actin scavenger gelsolin. Splenocyte death and neutrophil extracellular trap (NET) clearance deficiencies were prevalent in individuals with severe COVID-19 pneumonia or microbial sepsis. Activity tracing by plasma proteomic profiling uncovered an association between low NET clearance and increased COVID-19 pathology and mortality. Low NET clearance activity with comparable proteome associations was prevalent in healthy donors with low-grade inflammation, implicating defective chromatin clearance in the development of cardiovascular disease and linking COVID-19 susceptibility to pre-existing conditions. Hence, the combination of aberrant chromatin release with defects in protective clearance mechanisms lead to poor survival outcomes.


Subject(s)
COVID-19 , Sepsis , Animals , Mice , Actins , Chromatin , Deoxyribonuclease I , DNA , Neutrophils , Proteomics
3.
Nat Commun ; 13(1): 4658, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35945238

ABSTRACT

The mechanisms linking systemic infection to hyperinflammation and immune dysfunction in sepsis are poorly understood. Extracellular histones promote sepsis pathology, but their source and mechanism of action remain unclear. Here, we show that by controlling fungi and bacteria captured by splenic macrophages, neutrophil-derived myeloperoxidase attenuates sepsis by suppressing histone release. In systemic candidiasis, microbial capture via the phagocytic receptor SIGNR1 neutralizes myeloperoxidase by facilitating marginal zone infiltration and T cell death-dependent histone release. Histones and hyphae induce cytokines in adjacent CD169 macrophages including G-CSF that selectively depletes mature Ly6Ghigh neutrophils by shortening their lifespan in favour of immature Ly6Glow neutrophils with a defective oxidative burst. In sepsis patient plasma, these mediators shorten mature neutrophil lifespan and correlate with neutrophil mortality markers. Consequently, high G-CSF levels and neutrophil lifespan shortening activity are associated with sepsis patient mortality. Hence, by exploiting phagocytic receptors, pathogens degrade innate and adaptive immunity through the detrimental impact of downstream effectors on neutrophil lifespan.


Subject(s)
Neutrophils , Sepsis , Granulocyte Colony-Stimulating Factor/metabolism , Histones/metabolism , Humans , Longevity , Macrophages/metabolism , Peroxidase/metabolism , T-Lymphocytes/metabolism
4.
Cell Rep ; 31(5): 107602, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32375035

ABSTRACT

Neutrophil extracellular traps (NETs) promote atherosclerosis by inducing proinflammatory cytokines, but the underlying mechanism remains unknown. NET DNA is immunogenic, but given the cytotoxicity of NET histones, it is unclear how it activates cells without killing them. Here, we show that histones, DNA, citrullination, and fragmentation synergize to drive inflammation below the histone cytotoxicity threshold. At low concentrations, nucleosomes induce cytokines, but high concentrations kill cells before cytokines are produced. The synergy between histones and DNA is critical for sub-lethal signaling and relies on distinct roles for histones and DNA. Histones bind and activate TLR4, whereas DNA recruits TLR4 to histone-containing endosomes. Citrullination is dispensable for NETosis but potentiates histone-mediated signaling. Consistently, chromatin blockade or PAD4 deficiency reduces atherosclerosis. Inflammation is also reduced in infected mice expressing GFP-tagged histones that block TLR4 binding. Thus, chromatin promotes inflammation in sterile disease and infection via synergistic mechanisms that use signals with distinct functions.


Subject(s)
Citrullination/physiology , DNA/metabolism , Histones/metabolism , Inflammation/metabolism , Neutrophils/metabolism , Toll-Like Receptor 4/metabolism , Animals , Chromatin/metabolism , Extracellular Traps/metabolism , Humans , Neutrophil Activation/physiology
5.
Immunity ; 47(4): 739-751.e5, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29045903

ABSTRACT

Infection by helminth parasites is associated with amelioration of allergic reactivity, but mechanistic insights into this association are lacking. Products secreted by the mouse parasite Heligmosomoides polygyrus suppress type 2 (allergic) immune responses through interference in the interleukin-33 (IL-33) pathway. Here, we identified H. polygyrus Alarmin Release Inhibitor (HpARI), an IL-33-suppressive 26-kDa protein, containing three predicted complement control protein (CCP) modules. In vivo, recombinant HpARI abrogated IL-33, group 2 innate lymphoid cell (ILC2) and eosinophilic responses to Alternaria allergen administration, and diminished eosinophilic responses to Nippostrongylus brasiliensis, increasing parasite burden. HpARI bound directly to both mouse and human IL-33 (in the cytokine's activated state) and also to nuclear DNA via its N-terminal CCP module pair (CCP1/2), tethering active IL-33 within necrotic cells, preventing its release, and forestalling initiation of type 2 allergic responses. Thus, HpARI employs a novel molecular strategy to suppress type 2 immunity in both infection and allergy.


Subject(s)
Helminth Proteins/immunology , Interleukin-33/immunology , Nematospiroides dubius/immunology , Strongylida Infections/immunology , Allergens/immunology , Alternaria/immunology , Amino Acid Sequence , Animals , Blotting, Western , Eosinophils/immunology , Helminth Proteins/genetics , Helminth Proteins/metabolism , Host-Parasite Interactions/immunology , Humans , Immunity, Innate/immunology , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33/genetics , Interleukin-33/metabolism , Lymphocytes/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Nematospiroides dubius/genetics , Nematospiroides dubius/metabolism , Protein Binding/immunology , Receptors, Interleukin/immunology , Receptors, Interleukin/metabolism , Sequence Homology, Amino Acid , Strongylida Infections/metabolism , Strongylida Infections/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...