Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 278: 126419, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38908136

ABSTRACT

Chiral resolution of racemic compounds represents an important task in research and development and, most importantly, in the large-scale production of pharmaceuticals. Zeolites, which are already frequently utilized for their unique properties, represent materials that can be used for the development of new chiral stationary phases for liquid chromatography, simulated moving bed or enantioselective membranes. The aim of this study was to modify a series of MWW zeolites by a chiral anion-exchange type selector thereby creating a chiral stationary phase for enantiomeric resolution of acidic compounds. To evaluate the applicability of the prepared chiral stationary phase in liquid chromatography, we used N-protected amino acids as model analytes. First, we tested the new sorbents preferential sorption using N-(3,5-dinitrobenzoyl)leucine. We observed outstanding sorption properties of a zeolite-based sorbent (MCM-36), which were comparable to spherical chromatographic silica. This particular material was subsequently packed into a chromatographic column, which was tested under polar organic mode HPLC conditions facilitating baseline resolution of 5 out of 8 N-protected amino acids. Although the chromatographic performance shows several drawbacks (high backpressure, low column efficiency), it clearly documents the potential of the novel materials in chiral separation. To the best of our knowledge, this is the first example of the preparation of the chiral stationary phase based on MWW zeolites ever.

2.
Chirality ; 34(8): 1151-1161, 2022 08.
Article in English | MEDLINE | ID: mdl-35656848

ABSTRACT

Optically active linear polyimides and hyperbranched poly (amic acid-imide) were prepared by using procedures varying in particular in the maximum temperature employed in their synthesis. The two types of linear polyimides were based on 4,4'-(hexafluoroisopropylidene)diphthalic anhydride and 1,2-diaminocylohexane enantiomers or 4,4'-(hexafluoroisopropylidene)diphthalic anhydride and 2,2'-diamino-1,1'-binaphthalene enantiomers. The amine-terminated hyperbranched poly (amic acid-imide) was prepared from 4,4'-(hexafluoroisopropylidene)diphthalic anhydride and 4,4',4″-triaminotriphenylmethane, and its end groups were modified with the chiral selectors N-acetyl-D-phenylalanine or N-acetyl-L-phenylalanine. The final structure of the products was analyzed by IR spectroscopy, and their optical activity was evaluated and confirmed by polarimetry or circular dichroism.


Subject(s)
Anhydrides , Imides , Anhydrides/chemistry , Circular Dichroism , Imides/chemistry , Stereoisomerism , Temperature
3.
J Sep Sci ; 42(24): 3653-3661, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31625277

ABSTRACT

Chromatographic performance of a chiral stationary phase is significantly influenced by the employed solid support. Properties of the most commonly used support, silica particles, such as size and size distribution, and pore size are of utmost importance for both superficially porous particles and fully porous particles. In this work, we have focused on evaluation of fully porous particles from three different vendors as solid supports for a brush-type chiral stationary phase based on 9-O-tert-butylcarbamoyl quinidine. We have prepared corresponding stationary phases under identical experimental conditions and determined the parameters of the modified silica by physisorption measurements and scanning electron microscopy. Enantiorecognition properties of the chiral stationary phases have been studied using preferential sorption experiments. The same material was slurry-packed into chromatographic columns and the chromatographic properties have been evaluated in liquid chromatography. We show that preferential sorption can provide valuable information about the influence of the pore size and total pore volume on the interaction of analytes of different size with the chirally-modified silica surface. The data can be used to understand differences observed in chromatographic evaluation of the chiral stationary phases. The combination of preferential sorption and liquid chromatography separation can provide detailed information on new chiral stationary phases.

4.
Chempluschem ; 83(1): 7-18, 2018 Jan.
Article in English | MEDLINE | ID: mdl-31957320

ABSTRACT

Membrane technologies enable the facile separation of complex mixtures of gases, vapours, liquids and/or solids under mild conditions. Simultaneous chemical transformations can also be achieved in membranes by using catalytically active membrane materials or embedded catalysts, in so-called membrane reactors. A particular class of membranes containing or composed of ionic liquids (ILs) or polymeric ionic liquids (pILs) have recently emerged. These membranes often exhibit superior transport and separation properties to those of classical polymeric membranes. ILs and pILs have also been extensively studied as separation solvents, catalysts and co-catalysts in similar applications for which membranes are employed. In this review, after introducing ILs and their applications in catalysis, catalytic membranes and recent advances in membrane separation processes based on ILs are described. Finally, the nascent concept of catalytic IL membranes is highlighted, in which catalytically active ILs/pILs are incorporated into membrane technologies to act as a catalytic separation layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...