Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36616327

ABSTRACT

The weed Solidago canadensis L. poses a global threat to the environment as it spreads uncontrollably on roadsides, in forests, fields, meadows, and farmland. Goldenrod emits toxic substances that suppress other plants on the site, displacing wild ones. Thus, goldenrod conquers huge areas very quickly. The use of herbicides and mechanical methods does not solve the problem of the spontaneous spread of goldenrod. On the other hand, many scientists consider goldenrod as a valuable source of biologically active substances: flavonoids, phenolic compounds, vitamins, etc. In this study, we consider Solidago plants as a promising, free (cheap), and renewable substrate for the production of methane gas. The goal of the study was to identify the main patterns of degradation of the Solidago canadensis L. plant by methane-producing and sulfate-reducing bacteria with methane gas production and simultaneous detoxification of toxic copper. The composition of the gas phase was monitored by gas chromatography. The pH and redox potential parameters were determined potentiometrically; metal concentrations were measured by photometry. The concentration of flavonoids, sugars and phenolic compounds in plant biomass was determined according to well-known protocols. As a result of the study, high efficiencies of methane degradation in the Solidago plant and copper detoxification were obtained. Methane yield has reached the value of 68.2 L kg-1 TS of Solidago canadensis L. biomass. The degradation coefficient (Kd) was also high at 21.4. The Cu(II) was effectively immobilized by methanogens and sulfate reducers during the goldenrod degradation at the initial concentrations of 500 mg L-1. Thus, a new method of beneficial application of invasive plants was presented. The result confirms the possibility of using methanogenic microorganisms to produce methane gas from invasive weeds and detoxification of toxic metals.

2.
Microbiol Resour Announc ; 9(34)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32816975

ABSTRACT

This study presents high-quality draft genome assemblies of six bacterial strains isolated from the roots of wheat grown in soil contaminated with cadmium. The results of this study will help to elucidate at the molecular level how heavy metals affect interactions between beneficial rhizobacteria and crop plants.

3.
Curr Res Microb Sci ; 1: 44-52, 2020 Sep.
Article in English | MEDLINE | ID: mdl-34841301

ABSTRACT

Environmental copper pollution causes major destruction to ecological systems, which require the development of environmentally friendly biotechnological, in particular, microbial methods for copper removal. These methods rely on the availability of microorganisms resistant to high levels of copper. Here we isolated four bacterial strains with record resistance to up to 1.0 M Cu(II). The strains were isolated from ecologically diverse soil samples, and their genomes were sequenced. A 16S rRNA sequence-based phylogenetic analysis identified that all four isolates belong to the genus Pseudomonas. Particularly, strains UKR1 and UKR2 isolated from Kyiv region in Ukraine were identified as P. lactis and P. panacis, respectively, and strains UKR3 and UKR4 isolated from Svalbard Island in the Arctic Ocean and Galindez Island in Antarctica, respectively, were identified as P. veronii. Initial in-silico screening for genes encoding copper resistance mechanisms showed that all four strains encode copper resistance proteins CopA, CopB, CopD, CopA3, CopZ, as well as two-component regulatory system CusRS, all known to be associated with metal resistance in Pseudomonas genus. Further detailed studies will aim to characterize the full genomic potential of the isolates to enable their application for copper bioremediation in contaminated soils and industrial wastewaters.

SELECTION OF CITATIONS
SEARCH DETAIL
...