Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Endocrinology ; 158(10): 3684-3695, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28977603

ABSTRACT

Although it is well established that exogenous androgens have anabolic effects on skeletal muscle mass in humans and mice, data from muscle-specific androgen receptor (AR) knockout (ARKO) mice indicate that myocytic expression of the AR is dispensable for hind-limb muscle mass accrual in males. To identify possible indirect actions of androgens via the AR in neurons to regulate muscle, we generated neuron-ARKO mice in which the dominant DNA binding-dependent actions of the AR are deleted in neurons of the cortex, forebrain, hypothalamus, and olfactory bulb. Serum testosterone and luteinizing hormone levels were elevated twofold in neuron-ARKO males compared with wild-type littermates due to disruption of negative feedback to the hypothalamic-pituitary-gonadal axis. Despite this increase in serum testosterone levels, which was expected to increase muscle mass, the mass of the mixed-fiber gastrocnemius (Gast) and the fast-twitch fiber extensor digitorum longus hind-limb muscles was decreased by 10% in neuron-ARKOs at 12 weeks of age, whereas muscle strength and fatigue of the Gast were unaffected. The mass of the soleus muscle, however, which consists of a high proportion of slow-twitch fibers, was unaffected in neuron-ARKOs, demonstrating a stimulatory action of androgens via the AR in neurons to increase the mass of fast-twitch hind-limb muscles. Furthermore, neuron-ARKOs displayed reductions in voluntary and involuntary physical activity by up to 60%. These data provide evidence for a role of androgens via the AR in neurons to positively regulate fast-twitch hind-limb muscle mass and physical activity in male mice.


Subject(s)
Brain/metabolism , Motor Activity/genetics , Muscle, Skeletal/anatomy & histology , Neurons/metabolism , Physical Conditioning, Animal , Receptors, Androgen/genetics , Androgens , Animals , Blotting, Western , Feedback, Physiological , Genotype , Luteinizing Hormone/metabolism , Male , Mice , Mice, Knockout , Muscle Fatigue/genetics , Muscle Fibers, Skeletal , Muscle Strength/genetics , Organ Size/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Testosterone/metabolism
2.
J Physiol ; 592(7): 1705-20, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24492842

ABSTRACT

The gut hormone cholecystokinin (CCK) acts at subdiaphragmatic vagal afferents to induce renal and splanchnic sympathoinhibition and vasodilatation, via reflex inhibition of a subclass of cardiovascular-controlling neurons in the rostroventrolateral medulla (RVLM). These sympathoinhibitory and vasodilator responses are blunted in obese, hypertensive rats and our aim in the present study was to determine whether this is attributable to (i) altered sensitivity of presympathetic vasomotor RVLM neurons, and (ii) aberrant peripheral or central signalling mechanisms. Using a diet-induced obesity model, male Sprague-Dawley rats exhibited either an obesity-prone (OP) or obesity-resistant (OR) phenotype when placed on a medium high fat diet for 13-15 weeks; control animals were placed on a low fat diet. OP animals had elevated resting arterial pressure compared to OR/control animals (P < 0.05). Barosensitivity of RVLM neurons was significantly attenuated in OP animals (P < 0.05), suggesting altered baroreflex gain. CCK induced inhibitory responses in RVLM neurons of OR/control animals but not OP animals. Subdiaphragmatic vagal nerve responsiveness to CCK and CCK1 receptor mRNA expression in nodose ganglia did not differ between the groups, but CCK induced significantly less Fos-like immunoreactivity in both the nucleus of the solitary tract and the caudal ventrolateral medulla of OP animals compared to controls (P < 0.05). These results suggest that blunted sympathoinhibitory and vasodilator responses in obesity-related hypertension are due to alterations in RVLM neuronal responses, resulting from aberrant central but not peripheral signalling mechanisms. In obesity, blunted sympathoinhibitory mechanisms may lead to increased regional vascular resistance and contribute to the development of hypertension.


Subject(s)
Baroreflex , Hypertension/etiology , Medulla Oblongata/physiopathology , Neural Inhibition , Obesity/complications , Signal Transduction , Sympathetic Nervous System/physiopathology , Animals , Arterial Pressure , Cholecystokinin/pharmacology , Disease Models, Animal , Hypertension/metabolism , Hypertension/physiopathology , Male , Medulla Oblongata/drug effects , Medulla Oblongata/metabolism , Neural Inhibition/drug effects , Nodose Ganglion/metabolism , Nodose Ganglion/physiopathology , Obesity/metabolism , Obesity/physiopathology , Proto-Oncogene Proteins c-fos/metabolism , Rats, Sprague-Dawley , Receptor, Cholecystokinin A/genetics , Receptor, Cholecystokinin A/metabolism , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/metabolism
3.
Auton Neurosci ; 177(2): 95-100, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23506793

ABSTRACT

Gastric leptin elicits its cardiovascular and splanchnic sympathoinhibitory responses via a vagal afferent mechanism, however the latter are blunted/abolished in animals fed a medium high fat diet (MHFD). In a diet-induced obesity model we sought to determine whether the renal sympathetic nerve discharge (RSND) and regional vasodilator responses to gastric leptin are also affected by diet and/or obesity. The diet induced obesity model was used in 2 separate studies. After 13 weeks on a MHFD the animals were classified as either obesity prone (OP) or obesity resistant (OR) depending on their weight gain. Control animals were fed a low fat diet for an equivalent period. Arterial pressure (AP) and heart rate (HR) were monitored in isoflurane-anaesthetised, artificially ventilated animals and RSND or regional vascular responses to leptin (15 µg/kg) administered close to the coeliac artery were evaluated. OP rats had higher baseline AP compared to control/OR rats (P<0.05). Close arterial leptin inhibited RSND in control animals but this response was abolished in OR and OP animals (P<0.01 for both). Leptin administration increased renal vascular conductance in control animals but this response was significantly attenuated only in OP animals (P<0.05). The vasodilator response in the superior mesenteric artery was not significantly different in any of the groups (P>0.05). Together these results suggest that, while the renal sympathoinhibitory responses to gastric leptin are affected by diet, the vasodilator responses to leptin in the renal vascular bed are only affected in OP animals. These changes may impact on cardiovascular homeostatic mechanisms in obesity.


Subject(s)
Diet, High-Fat , Kidney/blood supply , Kidney/innervation , Leptin/blood , Obesity/blood , Sympathetic Fibers, Postganglionic/metabolism , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Celiac Artery/drug effects , Celiac Artery/metabolism , Diet, Fat-Restricted/methods , Diet, High-Fat/methods , Heart Rate/drug effects , Heart Rate/physiology , Kidney/drug effects , Leptin/administration & dosage , Male , Neural Inhibition/drug effects , Neural Inhibition/physiology , Obesity/prevention & control , Rats , Rats, Sprague-Dawley , Sympathetic Fibers, Postganglionic/drug effects , Treatment Outcome , Vasodilation/drug effects , Vasodilation/physiology
4.
Exp Physiol ; 98(3): 655-64, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23180814

ABSTRACT

The gut and kidney command >50% of cardiac output postprandially, highlighting the importance of these vascular beds in cardiovascular homeostasis. The gastrointestinal peptide cholecystokinin (CCK) induces vagally mediated splanchnic sympathoinhibition that is attenuated in animals fed a medium high-fat diet (MHFD); therefore, our aim was to determine whether renal sympathetic nerve discharge (RSND) responses to CCK are also affected by this diet, and whether these changes are associated with obesity and hypertension. Another aim was to determine whether regional vasodilator responses to CCK are affected in obesity-related hypertension. In two separate studies, Sprague-Dawley rats were fed either a low-fat diet (LFD; control) or a MHFD for 13 weeks, after which MHFD animals were classified as obesity prone (OP) or obesity resistant (OR) based on their weight gain falling into the upper or lower tertile, respectively. Arterial pressure and heart rate were monitored in isoflurane-anaesthetized, artificially ventilated animals, and either RSND or regional vascular responses to CCK (0.1-8 µg kg(-1)) were evaluated. The OP rats had higher baseline arterial pressure compared with control/OR rats (P < 0.05). Administration of CCK inhibited RSND and increased renal vascular conductance in control/OR rats, and these responses were significantly blunted in OP rats (P < 0.05 for all). Baseline arterial pressure was positively correlated with weight gain and inversely correlated with CCK-induced vasodilatation (P < 0.05 for both). We hypothesize that in obesity-related hypertension, disruption of the sympathoinhibitory signals elicited by CCK reduces vasodilatation in the splanchnic/renal regions, leading to increased postprandial vascular resistance.


Subject(s)
Cholecystokinin/pharmacology , Hypertension/physiopathology , Kidney/innervation , Obesity/complications , Sympathetic Nervous System/physiopathology , Animals , Blood Pressure/physiology , Cholecystokinin/physiology , Diet, Fat-Restricted , Diet, High-Fat , Heart Rate , Hypertension/etiology , Kidney/drug effects , Kidney/physiopathology , Male , Obesity/physiopathology , Rats , Rats, Sprague-Dawley , Sympathetic Nervous System/drug effects , Vasodilation/drug effects
5.
Am J Physiol Heart Circ Physiol ; 300(3): H961-7, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21239630

ABSTRACT

Gastric leptin and cholecystokinin (CCK) act on vagal afferents to induce cardiovascular effects and reflex inhibition of splanchnic sympathetic nerve discharge (SSND) and may act cooperatively in these responses. We sought to determine whether these effects are altered in animals that developed obesity in response to a medium high-fat diet (MHFD). Male Sprague-Dawley rats were placed on a low-fat diet (LFD; n = 8) or a MHFD (n = 24) for 13 wk, after which the animals were anesthetized and artificially ventilated. Arterial pressure was monitored and blood was collected for the determination of plasma leptin and CCK. SSND responses to leptin (15 µg/kg) and CCK (2 µg/kg) administered close to the coeliac artery were evaluated. Collectively, MHFD animals had significantly higher plasma leptin but lower plasma CCK levels than LFD rats (P < 0.05), and this corresponded to attenuated or reversed SSND responses to CCK (LFD, -21 ± 2%; and MHFD, -12 ± 2%; P < 0.05) and leptin (LFD, -6 ± 2%; and MHFD, 4 ± 1%; P < 0.001). Alternatively, animals on the MHFD were stratified into obesity-prone (OP; n = 8) or obesity-resistant (OR; n = 8) groups according to their weight gain falling within the upper or lower tertile, respectively. OP rats had significantly higher resting arterial pressure, adiposity, and plasma leptin but lower plasma CCK compared with LFD rats (P < 0.05). The SSND responses to CCK or leptin were not significantly different between OP and OR animals. These results demonstrate that a high-fat diet is associated with blunted splanchnic sympathoinhibitory responses to gastric leptin and CCK and may impact on sympathetic vasomotor mechanisms involved in circulatory control.


Subject(s)
Cholecystokinin/physiology , Dietary Fats/metabolism , Leptin/physiology , Splanchnic Nerves/physiology , Adiposity/physiology , Animals , Blood Circulation/physiology , Blood Pressure/physiology , Cholecystokinin/blood , Leptin/blood , Male , Rats , Rats, Sprague-Dawley/blood , Weight Gain/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...