Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2748, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553446

ABSTRACT

Biopolymer topology is critical for determining interactions inside cell environments, exemplified by DNA where its response to mechanical perturbation is as important as biochemical properties to its cellular roles. The dynamic structures of chiral biopolymers exhibit complex dependence with extension and torsion, however the physical mechanisms underpinning the emergence of structural motifs upon physiological twisting and stretching are poorly understood due to technological limitations in correlating force, torque and spatial localization information. We present COMBI-Tweez (Combined Optical and Magnetic BIomolecule TWEEZers), a transformative tool that overcomes these challenges by integrating optical trapping, time-resolved electromagnetic tweezers, and fluorescence microscopy, demonstrated on single DNA molecules, that can controllably form and visualise higher order structural motifs including plectonemes. This technology combined with cutting-edge MD simulations provides quantitative insight into complex dynamic structures relevant to DNA cellular processes and can be adapted to study a range of filamentous biopolymers.


Subject(s)
DNA , Mechanical Phenomena , DNA/chemistry , Biopolymers , Microscopy, Fluorescence , Optical Tweezers , Magnetic Phenomena
2.
J Mol Biol ; 436(2): 168369, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37977299

ABSTRACT

DNA replication in all organisms must overcome nucleoprotein blocks to complete genome duplication. Accessory replicative helicases in Escherichia coli, Rep and UvrD, help remove these blocks and aid the re-initiation of replication. Mechanistic details of Rep function have emerged from recent live cell studies; however, the division of UvrD functions between its activities in DNA repair and role as an accessory helicase remain unclear in live cells. By integrating super-resolved single-molecule fluorescence microscopy with biochemical analysis, we find that UvrD self-associates into tetrameric assemblies and, unlike Rep, is not recruited to a specific replisome protein despite being found at approximately 80% of replication forks. Instead, its colocation with forks is likely due to the very high frequency of replication blocks composed of DNA-bound proteins, including RNA polymerase and factors involved in repairing DNA damage. Deleting rep and DNA repair factor genes mutS and uvrA, and inhibiting transcription through RNA polymerase mutation and antibiotic inhibition, indicates that the level of UvrD at the fork is dependent on UvrD's function. Our findings show that UvrD is recruited to sites of nucleoprotein blocks via different mechanisms to Rep and plays a multi-faceted role in ensuring successful DNA replication.


Subject(s)
DNA Helicases , DNA Replication , Escherichia coli Proteins , Escherichia coli , DNA Helicases/metabolism , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Nucleoproteins/genetics , Nucleoproteins/metabolism
3.
Nucleic Acids Res ; 49(15): 8684-8698, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34352078

ABSTRACT

Nucleoid-associated proteins (NAPs) are crucial in organizing prokaryotic DNA and regulating genes. Vital to these activities are complex nucleoprotein structures, however, how these form remains unclear. Integration host factor (IHF) is an Escherichia coli NAP that creates very sharp bends in DNA at sequences relevant to several functions including transcription and recombination, and is also responsible for general DNA compaction when bound non-specifically. We show that IHF-DNA structural multimodality is more elaborate than previously thought, and provide insights into how this drives mechanical switching towards strongly bent DNA. Using single-molecule atomic force microscopy and atomic molecular dynamics simulations we find three binding modes in roughly equal proportions: 'associated' (73° of DNA bend), 'half-wrapped' (107°) and 'fully-wrapped' (147°), only the latter occurring with sequence specificity. We show IHF bridges two DNA double helices through non-specific recognition that gives IHF a stoichiometry greater than one and enables DNA mesh assembly. We observe that IHF-DNA structural multiplicity is driven through non-specific electrostatic interactions that we anticipate to be a general NAP feature for physical organization of chromosomes.


Subject(s)
DNA, Bacterial/genetics , Integration Host Factors/genetics , Nucleic Acid Conformation , Nucleoproteins/genetics , DNA Packaging/genetics , DNA, Bacterial/ultrastructure , DNA-Binding Proteins/genetics , DNA-Binding Proteins/ultrastructure , Escherichia coli/genetics , Integration Host Factors/ultrastructure , Microscopy, Atomic Force , Molecular Dynamics Simulation , Nucleoproteins/ultrastructure , Single Molecule Imaging
4.
Methods ; 193: 96-106, 2021 09.
Article in English | MEDLINE | ID: mdl-33571667

ABSTRACT

Single-molecule Förster resonance energy transfer (smFRET) of molecular motors provides transformative insights into their dynamics and conformational changes both at high temporal and spatial resolution simultaneously. However, a key challenge of such FRET investigations is to observe a molecule in action for long enough without restricting its natural function. The Anti-Brownian ELectrokinetic Trap (ABEL trap) sets out to combine smFRET with molecular confinement to enable observation times of up to several seconds while removing any requirement of tethered surface attachment of the molecule in question. In addition, the ABEL trap's inherent ability to selectively capture FRET active molecules accelerates the data acquisition process. In this work we exemplify the capabilities of the ABEL trap in performing extended timescale smFRET measurements on the molecular motor Rep, which is crucial for removing protein blocks ahead of the advancing DNA replication machinery and for restarting stalled DNA replication. We are able to monitor single Rep molecules up to 6 seconds with sub-millisecond time resolution capturing multiple conformational switching events during the observation time. Here we provide a step-by-step guide for the rational design, construction and implementation of the ABEL trap for smFRET detection of Rep in vitro. We include details of how to model the electric potential at the trap site and use Hidden Markov analysis of the smFRET trajectories.


Subject(s)
Fluorescence Resonance Energy Transfer , Molecular Conformation , Proteins
5.
Methods ; 193: 80-95, 2021 09.
Article in English | MEDLINE | ID: mdl-32544592

ABSTRACT

A major hallmark of Alzheimer's disease is the misfolding and aggregation of the amyloid- ß peptide (Aß). While early research pointed towards large fibrillar- and plaque-like aggregates as being the most toxic species, recent evidence now implicates small soluble Aß oligomers as being orders of magnitude more harmful. Techniques capable of characterizing oligomer stoichiometry and assembly are thus critical for a deeper understanding of the earliest stages of neurodegeneration and for rationally testing next-generation oligomer inhibitors. While the fluorescence response of extrinsic fluorescent probes such as Thioflavin-T have become workhorse tools for characterizing large Aß aggregates in solution, it is widely accepted that these methods suffer from many important drawbacks, including an insensitivity to oligomeric species. Here, we integrate several biophysics techniques to gain new insight into oligomer formation at the single-molecule level. We showcase single-molecule stepwise photobleaching of fluorescent dye molecules as a powerful method to bypass many of the traditional limitations, and provide a step-by-step guide to implementing the technique in vitro. By collecting fluorescence emission from single Aß(1-42) peptides labelled at the N-terminal position with HiLyte Fluor 555 via wide-field total internal reflection fluorescence (TIRF) imaging, we demonstrate how to characterize the number of peptides per single immobile oligomer and reveal heterogeneity within sample populations. Importantly, fluorescence emerging from Aß oligomers cannot be easily investigated using diffraction-limited optical microscopy tools. To assay oligomer activity, we also demonstrate the implementation of another biophysical method involving the ratiometric imaging of Fura-2-AM loaded cells which quantifies the rate of oligomer-induced dysregulation of intracellular Ca2+ homeostasis. We anticipate that the integrated single-molecule biophysics approaches highlighted here will develop further and in principle may be extended to the investigation of other protein aggregation systems under controlled experimental conditions.


Subject(s)
Photobleaching , Alzheimer Disease , Amyloid beta-Peptides , Fluorescent Dyes , Humans , Peptide Fragments , Protein Aggregates
6.
Nucleic Acids Res ; 47(12): 6287-6298, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31028385

ABSTRACT

DNA replication must cope with nucleoprotein barriers that impair efficient replisome translocation. Biochemical and genetic studies indicate accessory helicases play essential roles in replication in the presence of nucleoprotein barriers, but how they operate inside the cell is unclear. With high-speed single-molecule microscopy we observed genomically-encoded fluorescent constructs of the accessory helicase Rep and core replisome protein DnaQ in live Escherichia coli cells. We demonstrate that Rep colocalizes with 70% of replication forks, with a hexameric stoichiometry, indicating maximal occupancy of the single DnaB hexamer. Rep associates dynamically with the replisome with an average dwell time of 6.5 ms dependent on ATP hydrolysis, indicating rapid binding then translocation away from the fork. We also imaged PriC replication restart factor and observe Rep-replisome association is also dependent on PriC. Our findings suggest two Rep-replisome populations in vivo: one continually associating with DnaB then translocating away to aid nucleoprotein barrier removal ahead of the fork, another assisting PriC-dependent reloading of DnaB if replisome progression fails. These findings reveal how a single helicase at the replisome provides two independent ways of underpinning replication of protein-bound DNA, a problem all organisms face as they replicate their genomes.


Subject(s)
DNA Helicases/metabolism , DNA Replication , DNA-Directed DNA Polymerase/metabolism , Escherichia coli Proteins/metabolism , Multienzyme Complexes/metabolism , Adenosine Triphosphate/metabolism , DNA Helicases/chemistry , DNA Polymerase III/metabolism , Escherichia coli Proteins/chemistry , Protein Interaction Domains and Motifs , Single Molecule Imaging
7.
Nucleic Acids Res ; 47(10): 5100-5113, 2019 06 04.
Article in English | MEDLINE | ID: mdl-30869136

ABSTRACT

Bacterial genome duplication and transcription require simultaneous access to the same DNA template. Conflicts between the replisome and transcription machinery can lead to interruption of DNA replication and loss of genome stability. Pausing, stalling and backtracking of transcribing RNA polymerases add to this problem and present barriers to replisomes. Accessory helicases promote fork movement through nucleoprotein barriers and exist in viruses, bacteria and eukaryotes. Here, we show that stalled Escherichia coli transcription elongation complexes block reconstituted replisomes. This physiologically relevant block can be alleviated by the accessory helicase Rep or UvrD, resulting in the formation of full-length replication products. Accessory helicase action during replication-transcription collisions therefore promotes continued replication without leaving gaps in the DNA. In contrast, DinG does not promote replisome movement through stalled transcription complexes in vitro. However, our data demonstrate that DinG operates indirectly in vivo to reduce conflicts between replication and transcription. These results suggest that Rep and UvrD helicases operate on DNA at the replication fork whereas DinG helicase acts via a different mechanism.


Subject(s)
DNA Helicases/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , DNA Helicases/genetics , DNA Repair , DNA Replication , DNA, Bacterial/biosynthesis , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Multienzyme Complexes/metabolism , Transcription, Genetic
8.
Nucleic Acids Res ; 46(17): 8917-8925, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30060236

ABSTRACT

Helicases catalyse DNA and RNA strand separation. Proteins bound to the nucleic acid must also be displaced in order to unwind DNA. This is exemplified by accessory helicases that clear protein barriers from DNA ahead of advancing replication forks. How helicases catalyse DNA unwinding is increasingly well understood but how protein displacement is achieved is unclear. Escherichia coli Rep accessory replicative helicase lacking one of its four subdomains, 2B, has been shown to be hyperactivated for DNA unwinding in vitro but we show here that RepΔ2B is, in contrast, deficient in displacing proteins from DNA. This defect correlates with an inability to promote replication of protein-bound DNA in vitro and lack of accessory helicase function in vivo. Defective protein displacement is manifested on double-stranded and single-stranded DNA. Thus binding and distortion of duplex DNA by the 2B subdomain ahead of the helicase is not the missing function responsible for this deficiency. These data demonstrate that protein displacement from DNA is not simply achieved by helicase translocation alone. They also imply that helicases may have evolved different specific features to optimise DNA unwinding and protein displacement, both of which are now recognised as key functions in all aspects of nucleic acid metabolism.


Subject(s)
DNA Helicases/chemistry , DNA, Bacterial/chemistry , DNA, Single-Stranded/chemistry , DNA/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , DNA/genetics , DNA/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , DNA Primase/genetics , DNA Primase/metabolism , DNA Replication , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Deoxyribonuclease EcoRI/genetics , Deoxyribonuclease EcoRI/metabolism , DnaB Helicases/genetics , DnaB Helicases/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Models, Molecular , Nucleic Acid Conformation , Plasmids/chemistry , Plasmids/metabolism , Protein Binding , Protein Interaction Domains and Motifs
9.
Methods ; 108: 48-55, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27017910

ABSTRACT

Helicases are a subfamily of translocases that couple the directional translocation along a nucleic acid lattice to the separation of nucleic acid duplexes using the energy derived from nucleoside triphosphate hydrolysis. These enzymes perform essential functions in all aspects of nucleic acid metabolism by unwinding and remodelling DNA or RNA in DNA replication, repair, recombination, transcription and translation. Most classical biochemical studies assay the ability of these enzymes to separate naked nucleic acids. However, many different types of proteins form non-covalent interactions with nucleic acids in vivo and so the true substrates of helicases are protein-nucleic acid complexes rather than naked DNA and RNA. Studies over the last decade have revealed that bound proteins can have substantial inhibitory effects on the ability of helicases to unwind nucleic acids. Any analysis of helicase mechanisms in vitro must therefore consider helicase function within the context of nucleoprotein substrates rather than just DNA or RNA. Here we discuss how to analyse the impact of bound proteins on the ability of helicases to unwind DNA substrates in vitro.


Subject(s)
DNA Helicases/genetics , DNA Replication/genetics , DNA, Single-Stranded/genetics , Nucleoproteins/genetics , Base Sequence/genetics , DNA Helicases/chemistry , DNA, Single-Stranded/chemistry , Hydrolysis , Nucleic Acid Conformation , Nucleoproteins/chemistry
10.
Biochem J ; 439(1): 85-95, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21699496

ABSTRACT

CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) is a nucleic acid processing system in bacteria and archaea that interacts with mobile genetic elements. CRISPR DNA and RNA sequences are processed by Cas proteins: in Escherichia coli K-12, one CRISPR locus links to eight cas genes (cas1, 2, 3 and casABCDE), whose protein products promote protection against phage. In the present paper, we report that purified E. coli Cas3 catalyses ATP-independent annealing of RNA with DNA forming R-loops, hybrids of RNA base-paired into duplex DNA. ATP abolishes Cas3 R-loop formation and instead powers Cas3 helicase unwinding of the invading RNA strand of a model R-loop substrate. R-loop formation by Cas3 requires magnesium as a co-factor and is inactivated by mutagenesis of a conserved amino acid motif. Cells expressing the mutant Cas3 protein are more sensitive to plaque formation by the phage λvir. A complex of CasABCDE ('Cascade') also promotes R-loop formation and we discuss possible overlapping roles of Cas3 and Cascade in E. coli, and the apparently antagonistic roles of Cas3 catalysing RNA-DNA annealing and ATP-dependent helicase unwinding.


Subject(s)
DNA Helicases/metabolism , DNA, Bacterial/metabolism , Escherichia coli K12/metabolism , Escherichia coli Proteins/metabolism , RNA, Bacterial/metabolism , DNA Helicases/genetics , DNA, Bacterial/genetics , Escherichia coli K12/genetics , Escherichia coli Proteins/genetics , Magnesium/metabolism , RNA, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...