Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Carbohydr Polym ; 146: 420-6, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27112892

ABSTRACT

Chitosan has great potential as a pharmaceutical excipient. In this study, chitosan flake was micronized using cryo-ball and cryo-jet milling and subsequently sterilized with nitrogen plasma. Micronized chitosan was characterized by laser diffraction, scanning electron microscopy (SEM), conductometric titration, viscometry, loss on drying, FTIR, and limulus amebocyte lysate (LAL) assays. Cryo-jet milling produced mean particle size of 16.05µm, 44% smaller than cryo-ball milling. Cryomilled chitosan demonstrated increased hygroscopicity, but reduced molecular weight and degree of deacetylation (DD). SEM imaging showed highly irregular shapes. FTIR showed changes consistent with reduced DD and an unexplained shift at 1100cm(-1). Plasma treated chitosan was sterile with <2.5EU/g after low-pressure plasma and <1.3EU/g after atmospheric pressure plasma treatment. Plasma treatment decreased the reduced viscosity of chitosan flake and powder, with a greater effect on powder. In conclusion, pharmaceutical grade, sterile chitosan powder was produced with cryo-jet milling and plasma sterilization.


Subject(s)
Chitosan/chemistry , Excipients/chemistry , Chemistry, Pharmaceutical , Molecular Weight , Particle Size , Powders , Viscosity , Wettability
2.
Biochim Biophys Acta ; 1789(2): 78-87, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18809517

ABSTRACT

Insulin-like growth factor binding protein 5 (IGFBP5) is expressed in many cell types including osteoblasts and modulates IGF activities. IGFBP5 may affect osteoblasts and bone formation, in part by mechanisms independent of binding IGFs. The highly conserved IGFBP5 proximal promoter within 100 nucleotides of the start of transcription contains functional cis regulatory elements for C/EBP, Myb and AP-2. We report evidence for a functional Nuclear Factor I (NFI) cis element that mediates activation or repression of IGFBP5 transcription by the NFI gene family. All four NFI genes were expressed in human osteoblast cultures and osteosarcoma cell lines. Co-transfection with human IGFBP5 promoter luciferase reporter and murine Nfi expression vectors showed that Nfib was the most active in stimulating transcription. Nfix was less active and Nfia and Nfic were inhibitory. Knockdown of NFIB and NFIC expression using siRNA decreased and increased IGFBP5 expression, respectively. Analysis of IGFBP5 promoter deletion and mutation reporter constructs identified a functional NFI cis element. All four NFI proteins bound the NFI site in electrophoretic mobility shift experiments and NFIB bound in chromatin immunoprecipitation assays. Results suggest that NFI proteins are important regulators of IGFBP5 expression in human osteoblasts and thus in modulating IGFBP5 functions in bone.


Subject(s)
Insulin-Like Growth Factor Binding Protein 5/genetics , NFI Transcription Factors/metabolism , NFI Transcription Factors/physiology , Osteoblasts/metabolism , Transcription, Genetic/genetics , Blotting, Western , Cell Line , Chromatin Immunoprecipitation , Electrophoretic Mobility Shift Assay , Humans , NFI Transcription Factors/genetics , Promoter Regions, Genetic/genetics , Protein Binding/genetics , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL