Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Occup Environ Hyg ; 20(11): 506-519, 2023 11.
Article in English | MEDLINE | ID: mdl-37382490

ABSTRACT

Effective sampling for severe acute respiratory syndrome 2 (SARS-CoV-2) is a common approach for monitoring disinfection efficacy and effective environmental surveillance. This study evaluated sampling efficiency and limits of detection (LODs) of macrofoam swab and sponge stick sampling methods for recovering infectious SARS-CoV-2 and viral RNA (vRNA) from surfaces. Macrofoam swab and sponge stick methods were evaluated for collection of SARS-CoV-2 suspended in a soil load from 6-in2 coupons composed of four materials: stainless steel (SS), acrylonitrile butadiene styrene (ABS) plastic, bus seat fabric, and Formica. Recovery of infectious SARS-CoV-2 was more efficient than vRNA recovery on all materials except Formica (macrofoam swab sampling) and ABS (sponge stick sampling). Macrofoam swab sampling recovered significantly more vRNA from Formica than ABS and SS, and sponge stick sampling recovered significantly more vRNA from ABS than Formica and SS, suggesting that material and sampling method choice can affect surveillance results. Time since initial contamination significantly affected infectious virus recovery from all materials, with vRNA recovery showing limited to no difference, suggesting that SARS-CoV-2 vRNA can remain detectable after viral infectivity has dissipated. This study showed that a complex relationship exists between sampling method, material, time from contamination to sampling, and recovery of SARS-CoV-2. In conclusion, data show that careful consideration be used when selecting surface types for sampling and interpreting SARS-CoV-2 vRNA recovery with respect to presence of infectious virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Touch , Stainless Steel
2.
Vector Borne Zoonotic Dis ; 22(2): 138-147, 2022 02.
Article in English | MEDLINE | ID: mdl-35133885

ABSTRACT

Teschen disease is an acute fatal enterovirus encephalomyelitis of pigs, characterized by a range of central nervous system disorders. The cause of porcine enterovirus encephalomyelitis is the picornavirus porcine teschovirus-1 (PTV-1). There are at least 12 disctinct serotypes of PTVs, where PTV-2 to PTV-12 serogroups are associated with other forms of disease (Talfan disease or poliomyelitis suum) or benign enzootic paresis. Combined, PTVs have been found to have a high seroprevalence, up to 65%, in healthy pig populations in Europe. PTVs have also been detected in wild boar, including the divergent PTV-13 serogroup; wild suids may represent a sylvatic reservoir capable of carrying the virus long distances. In Ukraine, Teschen disease is widespread and causes lethal disease in domestic pigs. To understand temporal and geographical distribution of Teschen disease virus (PTV-1) in wild boar in Ukraine (2001-2013), we analyzed seroprevalence of 6840 blood serum samples from hunted suids using a virus microneutralization assay. A total of 1364 samples (19.9%) were seropositive, with average antibody titer ratios 5.89 ± 0.03 log2 (range 5-12 log2). Teschen seroprevalence was temporally and geographically concentrated in the northern and western regions of Ukraine, corresponding to forested regions (polissya) and overlapping with wild boar populations and habitats, suggesting endemicity in wild boar. The virus sporadically emerged in central, southern, and eastern forested regions, suggesting long-distance movement of infected wild suids. Thus, wild boar should be monitored for potential transboundary spread in forested and mountain regions and spillover of PTVs to domestic swine populations.


Subject(s)
Encephalomyelitis, Enzootic Porcine , Swine Diseases , Animals , Seroepidemiologic Studies , Sus scrofa , Swine , Swine Diseases/epidemiology , Ukraine/epidemiology
3.
J Appl Microbiol ; 132(4): 3375-3386, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34981882

ABSTRACT

AIMS: This study evaluated the residual efficacy of commercially available antimicrobial coatings or films against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on non-porous surfaces. METHODS AND RESULTS: Products were applied to stainless steel or ABS plastic coupons and dried overnight. Coupons were inoculated with SARS-CoV-2 in the presence of 5% soil load. Recovered infectious SARS-CoV-2 was quantified by TCID50 assay. Tested product efficacies ranged from <1.0 to >3.0 log10 reduction at a 2-h contact time. The log10 reduction in recovered infectious SARS-CoV-2 ranged from 0.44 to 3 log10 reduction on stainless steel and 0.25 to >1.67 log10 on ABS plastic. The most effective products tested contained varying concentrations (0.5%-1.3%) of the same active ingredient: 3-(trihydroxysilyl) propyldimethyloctadecyl ammonium chloride. Products formulated with other quaternary ammonium compounds were less effective against SARS-CoV-2 in this test. CONCLUSIONS: The residual antimicrobial products tested showed varied effectiveness against SARS-CoV-2 as a function of product tested. Several products were identified as efficacious against SARS-CoV-2 on both stainless steel and ABS plastic surfaces under the conditions evaluated. Differences in observed efficacy may be due to variation in active ingredient formulation; efficacy is, therefore, difficult to predict based upon listed active ingredient and its concentration. SIGNIFICANCE AND IMPACT: This study highlights the formulation-specific efficacy of several products against SARS-CoV-2 and may inform future development of residual antiviral products for use on non-porous surfaces. The identification of antimicrobial coatings or films showing promise to inactivate SARS-CoV-2 suggests that these products may be worth future testing and consideration.


Subject(s)
Anti-Infective Agents , COVID-19 Drug Treatment , Anti-Bacterial Agents , Anti-Infective Agents/pharmacology , Antiviral Agents/pharmacology , Humans , SARS-CoV-2
4.
J Occup Environ Hyg ; 19(2): 91-101, 2022 02.
Article in English | MEDLINE | ID: mdl-34878351

ABSTRACT

This study evaluated the efficacy of detergent-based surface cleaning methods against Murine Hepatitis Virus A59 (MHV) as a surrogate coronavirus for SARS-CoV-2. MHV (5% soil load in culture medium or simulated saliva) was inoculated onto four different high-touch materials [stainless steel (SS), Acrylonitrile Butadiene Styrene plastic (ABS), Formica, seat fabric (SF)]. Immediately and 2-hr post-inoculation, coupons were cleaned (damp wipe wiping) with and without pretreatment with detergent solution or 375 ppm hard water. Results identified that physical removal (no pretreatment) removed >2.3 log10 MHV on ABS, SS, and Formica when surfaces were cleaned immediately. Pretreatment with detergent or hard water increased effectiveness over wet wiping 2-hr post-inoculation; pretreatment with detergent significantly increased (p ≤ 0.05) removal of MHV in simulated saliva, but not in culture media, over hard water pretreatment (Formica and ABS). Detergent and hard water cleaning methods were ineffective on SF under all conditions. Overall, efficacy of cleaning methods against coronaviruses are material- and matrix-dependent; pre-wetting surfaces with detergent solutions increased efficacy against coronavirus suspended in simulated saliva. This study provides data highlighting the importance of incorporating a pre-wetting step prior to detergent cleaning and can inform cleaning strategies to reducing coronavirus surface transmission.


Subject(s)
COVID-19 , Murine hepatitis virus , Animals , Detergents , Humans , Mice , Porosity , SARS-CoV-2
5.
J Appl Microbiol ; 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36626793

ABSTRACT

AIMS: This study aimed to provide operationally relevant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surface disinfection efficacy information. METHODS AND RESULTS: Three EPA-registered disinfectants (Vital Oxide, Peroxide, and Clorox Total 360) and one antimicrobial formulation (CDC bleach) were evaluated against SARS-CoV-2 on material coupons and were tested using Spray (no touch with contact time) and Spray & Wipe (wipe immediately post-application) methods immediately and 2 h post-contamination. Efficacy was evaluated for infectious virus, with a subset tested for viral RNA (vRNA) recovery. Efficacy varied by method, disinfectant, and material. CDC bleach solution showed low efficacy against SARS-CoV-2 (log reduction < 1.7), unless applied via Spray & Wipe. Additionally, mechanical wiping increased the efficacy of treatments against SARS-CoV-2. The recovery of vRNA post-disinfection suggested that vRNA may overestimate infectious virus remaining. CONCLUSIONS: Efficacy depends on surface material, chemical, and disinfection procedure, and suggests that mechanical wiping alone has some efficacy at removing SARS-CoV-2 from surfaces. We observed that disinfectant treatment biased the recovery of vRNA over infectious virus. SIGNIFICANCE AND IMPACT OF STUDY: These data are useful for developing effective, real-world disinfection procedures, and inform public health experts on the utility of PCR-based surveillance approaches.

6.
Article in English | MEDLINE | ID: mdl-29854044

ABSTRACT

Identifying misconceptions in student learning is a valuable practice for evaluating student learning gains and directing educational interventions. By accurately identifying students' knowledge and misconceptions about microbiology concepts, instructors can design effective classroom practices centered on student understanding. Following the development of ASM's Curriculum Guidelines in 2012, we developed a concept inventory, the Microbiology for Health Sciences Concept Inventory (MHSCI), that measures learning gains and identifies student misconceptions in health sciences microbiology classrooms. The 23-question MHSCI was delivered to a wide variety of students at multiple institution types. Psychometric analysis identified that the MHSCI instrument is both discriminatory and reliable in measuring student learning gains. The MHSCI results correlated with course outcomes, showing the value of using the instrument alongside course level assessments to measure student learning. The MHSCI is a reliable and efficient way to measure student learning in microbiology and can be used both as a faculty development tool and an effective student assessment tool.

7.
J Agric Food Chem ; 64(38): 7059-67, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27499061

ABSTRACT

Microbial degradation of clothianidin was characterized under aerobic and anaerobic California rice field conditions. Rate constants (k) and half-lives (DT50) were determined for aerobic and anaerobic microcosms, and an enrichment experiment was performed at various nutrient conditions and pesticide concentrations. Temperature effects on anaerobic degradation rates were determined at 22 ± 2 and 35 ± 2 °C. Microbial growth was assessed in the presence of various pesticide concentrations, and distinct colonies were isolated and identified. Slow aerobic degradation was observed, but anaerobic degradation occurred rapidly at both 25 and 35 °C. Transformation rates and DT50 values in flooded soil at 35 ± 2 °C (k = -7.16 × 10(-2) ± 3.08 × 10(-3) day(-1), DT50 = 9.7 days) were significantly faster than in 25 ± 2 °C microcosms (k= -2.45 × 10(-2) ± 1.59 × 10(-3) day(-1), DT50 = 28.3 days). At the field scale, biodegradation of clothianidin will vary with extent of oxygenation.


Subject(s)
Guanidines/chemistry , Insecticides/chemistry , Oryza/microbiology , Soil Microbiology , Soil Pollutants/chemistry , Thiazoles/chemistry , Bacteria, Aerobic/metabolism , Bacteria, Anaerobic/metabolism , Biodegradation, Environmental , California , Colony Count, Microbial , Crops, Agricultural/microbiology , Hydrogen-Ion Concentration , Neonicotinoids , Phylogeny , Soil/chemistry , Temperature
8.
J Virol ; 82(6): 2883-94, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18199653

ABSTRACT

The severe acute respiratory syndrome coronavirus (SARS-CoV) spike glycoprotein (S) is a class I viral fusion protein that binds to its receptor glycoprotein, human angiotensin converting enzyme 2 (hACE2), and mediates virus entry and cell-cell fusion. The juxtamembrane domain (JMD) of S is an aromatic amino acid-rich region proximal to the transmembrane domain that is highly conserved in all coronaviruses. Alanine substitutions for one or two of the six aromatic residues in the JMD did not alter the surface expression of the SARS-CoV S proteins with a deletion of the C-terminal 19 amino acids (S Delta19) or reduce binding to soluble human ACE2 (hACE2). However, hACE2-dependent entry of trypsin-treated retrovirus pseudotyped viruses expressing JMD mutant S Delta19 proteins was greatly reduced. Single alanine substitutions for aromatic residues reduced entry to 10 to 60% of the wild-type level. The greatest reduction was caused by residues nearest the transmembrane domain. Four double alanine substitutions reduced entry to 5 to 10% of the wild-type level. Rapid hACE2-dependent S-mediated cell-cell fusion was reduced to 60 to 70% of the wild-type level for all single alanine substitutions and the Y1188A/Y1191A protein. S Delta19 proteins with other double alanine substitutions reduced cell-cell fusion further, from 40% to less than 20% of wild-type levels. The aromatic amino acids in the JMD of the SARS-CoV S glycoprotein play critical roles in receptor-dependent virus-cell and cell-cell fusion. Because the JMD is so highly conserved in all coronavirus S proteins, it is a potential target for development of drugs that may inhibit virus entry and/or cell-cell fusion mediated by S proteins of all coronaviruses.


Subject(s)
Amino Acids, Aromatic/physiology , Cell Fusion , Membrane Glycoproteins/physiology , Membrane Proteins/physiology , Receptors, Virus/physiology , Severe acute respiratory syndrome-related coronavirus/physiology , Viral Envelope Proteins/physiology , Amino Acid Sequence , Amino Acids, Aromatic/chemistry , Base Sequence , Cell Line , DNA Primers , Humans , Membrane Glycoproteins/chemistry , Membrane Proteins/chemistry , Molecular Sequence Data , Receptors, Virus/chemistry , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins/chemistry
10.
J Biol Chem ; 279(20): 20836-49, 2004 May 14.
Article in English | MEDLINE | ID: mdl-14996844

ABSTRACT

The spike (S) glycoprotein of coronaviruses mediates viral entry into host cells. It is a type 1 viral fusion protein that characteristically contains two heptad repeat regions, denoted HR-N and HR-C, that form coiled-coil structures within the ectodomain of the protein. Previous studies have shown that the two heptad repeat regions can undergo a conformational change from their native state to a 6-helix bundle (trimer of dimers), which mediates fusion of viral and host cell membranes. Here we describe the biophysical analysis of the two predicted heptad repeat regions within the severe acute respiratory syndrome coronavirus S protein. Our results show that in isolation the HR-N region forms a stable alpha-helical coiled coil that associates in a tetrameric state. The HR-C region in isolation formed a weakly stable trimeric coiled coil. When mixed together, the two peptide regions (HR-N and HR-C) associated to form a very stable alpha-helical 6-stranded structure (trimer of heterodimers). Systematic peptide mapping showed that the site of interaction between the HR-N and HR-C regions is between residues 916-950 of HR-N and residues 1151-1185 of HR-C. Additionally, interchain disulfide bridge experiments showed that the relative orientation of the HR-N and HR-C helices in the complex was antiparallel. Overall, the structure of the hetero-stranded complex is consistent with the structures observed for other type 1 viral fusion proteins in their fusion-competent state.


Subject(s)
Membrane Glycoproteins/chemistry , Severe acute respiratory syndrome-related coronavirus/chemistry , Viral Envelope Proteins/chemistry , Amino Acid Sequence , Base Sequence , Circular Dichroism , DNA Primers , Escherichia coli/genetics , Hemagglutinins, Viral/chemistry , Hemagglutinins, Viral/isolation & purification , Membrane Glycoproteins/chemical synthesis , Membrane Glycoproteins/isolation & purification , Molecular Sequence Data , Molecular Weight , Peptide Fragments/chemistry , Peptide Fragments/isolation & purification , Protein Conformation , Restriction Mapping , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins/chemical synthesis , Viral Envelope Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...