Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
J Phys Chem B ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747451

ABSTRACT

Glycine receptors are pentameric ligand-gated ion channels that conduct chloride ions across postsynaptic membranes to facilitate fast inhibitory neurotransmission. In addition to gating by the glycine agonist, interactions with lipids and other compounds in the surrounding membrane environment modulate their function, but molecular details of these interactions remain unclear, in particular, for cholesterol. Here, we report coarse-grained simulations in a model neuronal membrane for three zebrafish glycine receptor structures representing apparent resting, open, and desensitized states. We then converted the systems to all-atom models to examine detailed lipid interactions. Cholesterol bound to the receptor at an outer-leaflet intersubunit site, with a preference for the open and desensitized versus resting states, indicating that it can bias receptor function. Finally, we used short atomistic simulations and iterative amino acid perturbations to identify residues that may mediate allosteric gating transitions. Frequent cholesterol contacts in atomistic simulations clustered with residues identified by perturbation analysis and overlapped with mutations influencing channel function and pathology. Cholesterol binding at this site was also observed in a recently reported pig heteromeric glycine receptor. These results indicate state-dependent lipid interactions relevant to allosteric transitions of glycine receptors, including specific amino acid contacts applicable to biophysical modeling and pharmaceutical design.

2.
EMBO J ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671253

ABSTRACT

Transient receptor potential (TRP) ion channels are involved in the surveillance or regulation of the acid-base balance. Here, we demonstrate that weak carbonic acids, including acetic acid, lactic acid, and CO2 activate and sensitize TRPV2 through a mechanism requiring permeation through the cell membrane. TRPV2 channels in cell-free inside-out patches maintain weak acid-sensitivity, but protons applied on either side of the membrane do not induce channel activation or sensitization. The involvement of proton modulation sites for weak acid-sensitivity was supported by the identification of titratable extracellular (Glu495, Glu561) and intracellular (His521) residues on a cryo-EM structure of rat TRPV2 (rTRPV2) treated with acetic acid. Molecular dynamics simulations as well as patch clamp experiments on mutant rTRPV2 constructs confirmed that these residues are critical for weak acid-sensitivity. We also demonstrate that the pore residue Glu609 dictates an inhibition of weak acid-induced currents by extracellular calcium. Finally, TRPV2-expression in HEK293 cells is associated with an increased weak acid-induced cytotoxicity. Together, our data provide new insights into weak acids as endogenous modulators of TRPV2.

3.
Protein Eng Des Sel ; 372024 Jan 29.
Article in English | MEDLINE | ID: mdl-38302088

ABSTRACT

We developed fluorescent protein sensors for nicotine with improved sensitivity. For iNicSnFR12 at pH 7.4, the proportionality constant for ∆F/F0vs [nicotine] (δ-slope, 2.7 µM-1) is 6.1-fold higher than the previously reported iNicSnFR3a. The activated state of iNicSnFR12 has a fluorescence quantum yield of at least 0.6. We measured similar dose-response relations for the nicotine-induced absorbance increase and fluorescence increase, suggesting that the absorbance increase leads to the fluorescence increase via the previously described nicotine-induced conformational change, the 'candle snuffer' mechanism. Molecular dynamics (MD) simulations identified a binding pose for nicotine, previously indeterminate from experimental data. MD simulations also showed that Helix 4 of the periplasmic binding protein (PBP) domain appears tilted in iNicSnFR12 relative to iNicSnFR3a, likely altering allosteric network(s) that link the ligand binding site to the fluorophore. In thermal melt experiments, nicotine stabilized the PBP of the tested iNicSnFR variants. iNicSnFR12 resolved nicotine in diluted mouse and human serum at 100 nM, the peak [nicotine] that occurs during smoking or vaping, and possibly at the decreasing levels during intervals between sessions. NicSnFR12 was also partially activated by unidentified endogenous ligand(s) in biofluids. Improved iNicSnFR12 variants could become the molecular sensors in continuous nicotine monitors for animal and human biofluids.


Subject(s)
Biosensing Techniques , Periplasmic Binding Proteins , Humans , Animals , Mice , Nicotine , Periplasmic Binding Proteins/chemistry , Periplasmic Binding Proteins/metabolism , Ligands , Binding Sites
4.
bioRxiv ; 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-36712031

ABSTRACT

We developed fluorescent protein sensors for nicotine with improved sensitivity. For iNicSnFR12 at pH 7.4, the proportionality constant for ΔF/F0 vs [nicotine] (δ-slope, 2.7 µM-1) is 6.1-fold higher than the previously reported iNicSnFR3a. The activated state of iNicSnFR12 has a fluorescence quantum yield of at least 0.6. We measured similar dose-response relations for the nicotine-induced absorbance increase and fluorescence increase, suggesting that the absorbance increase leads to the fluorescence increase via the previously described nicotine-induced conformational change, the "candle snuffer" mechanism. Molecular dynamics (MD) simulations identified a binding pose for nicotine, previously indeterminate from experimental data. MD simulations also showed that Helix 4 of the periplasmic binding protein (PBP) domain appears tilted in iNicSnFR12 relative to iNicSnFR3a, likely altering allosteric network(s) that link the ligand binding site to the fluorophore. In thermal melt experiments, nicotine stabilized the PBP of the tested iNicSnFR variants. iNicSnFR12 resolved nicotine in diluted mouse and human serum at 100 nM, the peak [nicotine] that occurs during smoking or vaping, and possibly at the decreasing levels during intervals between sessions. NicSnFR12 was also partially activated by unidentified endogenous ligand(s) in biofluids. Improved iNicSnFR12 variants could become the molecular sensors in continuous nicotine monitors for animal and human biofluids.

5.
Nucleic Acids Res ; 52(2): 513-524, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38100361

ABSTRACT

Protein translation is orchestrated through tRNA aminoacylation and ribosomal elongation. Among the highly conserved structure of tRNAs, they have distinguishing features which promote interaction with their cognate aminoacyl tRNA synthetase (aaRS). These key features are referred to as identity elements. In our study, we investigated the tRNA:aaRS pair that installs the 22nd amino acid, pyrrolysine (tRNAPyl:PylRS). Pyrrolysyl-tRNA synthetases (PylRSs) are naturally encoded in some archaeal and bacterial genomes to acylate tRNAPyl with pyrrolysine. Their large amino acid binding pocket and poor recognition of the tRNA anticodon have been instrumental in incorporating >200 noncanonical amino acids. PylRS enzymes can be divided into three classes based on their genomic structure. Two classes contain both an N-terminal and C-terminal domain, however the third class (ΔpylSn) lacks the N-terminal domain. In this study we explored the tRNA identity elements for a ΔpylSn tRNAPyl from Candidatus Methanomethylophilus alvus which drives the orthogonality seen with its cognate PylRS (MaPylRS). From aminoacylation and translation assays we identified five key elements in ΔpylSn tRNAPyl necessary for MaPylRS activity. The absence of a base (position 8) and a G-U wobble pair (G28:U42) were found to affect the high-resolution structure of the tRNA, while molecular dynamic simulations led us to acknowledge the rigidity imparted from the G-C base pairs (G3:C70 and G5:C68).


Enzymes known as PylRS offer the remarkable ability to expand the natural genetic code of a living cell with unnatural amino acids. Currently, over 200 unnatural amino acids can be genetically encoded with the help of PylRS and its partner tRNAPyl, enabling us to endow proteins with novel properties, or regulate protein activity using light or inducible cross-linking. One intriguing feature of PylRS enzymes is their ability to avoid cross-reactivity when two PylRS homologs from different organisms-such as those from the archaea Methanosarcina mazei and Methanomethylophilus alvus-are co-expressed in a single cell. This makes it possible to simultaneously encode two unnatural amino acids in a single protein. This study illuminates the elusive mechanism of PylRS specificity by using cryo-electron microscopy, biochemistry and molecular simulations. The interaction of PylRS from M. alvus with its tRNAPyl is best described as two pieces of a jigsaw puzzle; in which PylRS recognizes the unique shape of its cognate tRNA instead of specific nucleotides in the tRNA sequence like other tRNA-binding enzymes. This finding may streamline the rational design of tools for simultaneous genetic incorporation of multiple unnatural amino acids, thereby facilitating the development of valuable proteins for research, medicine, and biotechnology.


Subject(s)
Amino Acyl-tRNA Synthetases , Archaea , Gastrointestinal Microbiome , Humans , Amino Acids/metabolism , Amino Acyl-tRNA Synthetases/isolation & purification , Amino Acyl-tRNA Synthetases/metabolism , Archaea/enzymology , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Transfer RNA Aminoacylation
6.
Neuron ; 111(21): 3450-3464.e5, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37659407

ABSTRACT

The neurotransmitter γ-aminobutyric acid (GABA) drives critical inhibitory processes in and beyond the nervous system, partly via ionotropic type-A receptors (GABAARs). Pharmacological properties of ρ-type GABAARs are particularly distinctive, yet the structural basis for their specialization remains unclear. Here, we present cryo-EM structures of a lipid-embedded human ρ1 GABAAR, including a partial intracellular domain, under apo, inhibited, and desensitized conditions. An apparent resting state, determined first in the absence of modulators, was recapitulated with the specific inhibitor (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid and blocker picrotoxin and provided a rationale for bicuculline insensitivity. Comparative structures, mutant recordings, and molecular simulations with and without GABA further explained the sensitized but slower activation of ρ1 relative to canonical subtypes. Combining GABA with picrotoxin also captured an apparent uncoupled intermediate state. This work reveals structural mechanisms of gating and modulation with applications to ρ-specific pharmaceutical design and to our biophysical understanding of ligand-gated ion channels.


Subject(s)
Receptors, GABA-A , gamma-Aminobutyric Acid , Humans , Receptors, GABA-A/metabolism , Picrotoxin/pharmacology , Ligands , gamma-Aminobutyric Acid/metabolism , Bicuculline/pharmacology , Binding Sites
7.
Nat Commun ; 14(1): 5091, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37607940

ABSTRACT

γ-Aminobutyric acid type A (GABAA) receptors mediate fast inhibitory signaling in the brain and are targets of numerous drugs and endogenous neurosteroids. A subset of neurosteroids are GABAA receptor positive allosteric modulators; one of these, allopregnanolone, is the only drug approved specifically for treating postpartum depression. There is a consensus emerging from structural, physiological and photolabeling studies as to where positive modulators bind, but how they potentiate GABA activation remains unclear. Other neurosteroids are negative modulators of GABAA receptors, but their binding sites remain debated. Here we present structures of a synaptic GABAA receptor bound to allopregnanolone and two inhibitory sulfated neurosteroids. Allopregnanolone binds at the receptor-bilayer interface, in the consensus potentiator site. In contrast, inhibitory neurosteroids bind in the pore. MD simulations and electrophysiology support a mechanism by which allopregnanolone potentiates channel activity and suggest the dominant mechanism for sulfated neurosteroid inhibition is through pore block.


Subject(s)
Neurosteroids , Female , Humans , Pregnanolone/pharmacology , Receptors, GABA-A , Binding Sites , Sulfates , gamma-Aminobutyric Acid
8.
bioRxiv ; 2023 May 02.
Article in English | MEDLINE | ID: mdl-37205542

ABSTRACT

The rise of open science and the absence of a global dedicated data repository for molecular dynamics (MD) simulations has led to the accumulation of MD files in generalist data repositories, constituting the dark matter of MD - data that is technically accessible, but neither indexed, curated, or easily searchable. Leveraging an original search strategy, we found and indexed about 250,000 files and 2,000 datasets from Zenodo, Figshare and Open Science Framework. With a focus on files produced by the Gromacs MD software, we illustrate the potential offered by the mining of publicly available MD data. We identified systems with specific molecular composition and were able to characterize essential parameters of MD simulation, such as temperature and simulation length, and identify model resolution, such as all-atom and coarse-grain. Based on this analysis, we inferred metadata to propose a search engine prototype to explore collected MD data. To continue in this direction, we call on the community to pursue the effort of sharing MD data, and increase populating and standardizing metadata to reuse this valuable matter.

9.
ACS Chem Neurosci ; 14(6): 1156-1165, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36821490

ABSTRACT

The α7 nicotinic acetylcholine receptor (α7nAChR) mediates signaling in the central nervous system and cholinergic anti-inflammatory pathways. Ivermectin is a positive allosteric modulator of a full-length α7nAChR and an agonist of the α7nAChR construct containing transmembrane (TMD) and intracellular (ICD) domains, but structural insights of the binding have not previously been determined. Here, combining nuclear magnetic resonance as a primary experimental tool with Rosetta comparative modeling and molecular dynamics simulations, we have revealed details of ivermectin binding to the α7nAChR TMD + ICD and corresponding structural changes in an ivermectin-induced desensitized state. Ivermectin binding was stabilized predominantly by hydrophobic interactions from interfacial residues between adjacent subunits near the extracellular end of the TMD, where the inter-subunit gap was substantially expanded in comparison to the apo structure. The ion-permeation pathway showed a profile distinctly different from the resting-state profile but similar to profiles of desensitized α7nAChR. The ICD also exhibited structural changes, including reorientation of the MX and h3 helices relative to the channel axis. The resulting structures of the α7nAChR TMD + ICD in complex with ivermectin provide opportunities for discovering new modulators of therapeutic potential and exploring the structural basis of cytoplasmic signaling under different α7nAChR functional states.


Subject(s)
Ivermectin , alpha7 Nicotinic Acetylcholine Receptor , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Ivermectin/pharmacology , Ivermectin/chemistry , Ivermectin/metabolism , Molecular Dynamics Simulation , Signal Transduction
10.
J Gen Physiol ; 155(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-36515966

ABSTRACT

Voltage-gated sodium channels play an important role in electrical signaling in excitable cells. In response to changes in membrane potential, they cycle between nonconducting and conducting conformations. With recent advances in structural biology, structures of sodium channels have been captured in several distinct conformations, which are thought to represent different functional states. However, it has been difficult to capture the intrinsically transient open state. We recently showed that a proposed open state of the bacterial sodium channel NavMs was not conductive and that a conformational change involving a transition to a π-helix in the pore-lining S6 helix converted this structure into a conducting state. However, the relevance of this structural feature in other sodium channels, and its implications for the broader gating cycle, remained unclear. Here, we propose a comparable open state of another class of bacterial channel from Aliarcobacter butzleri (NavAb) with characteristic pore hydration, ion permeation, and drug binding properties. Furthermore, we show that a π-helix transition can lead to pore opening and that such a conformational change blocks fenestrations in the inner helix bundle. We also discover that a region in the C-terminal domain can undergo a disordering transition proposed to be important for pore opening. These results support a role for a π-helix transition in the opening of NavAb, enabling new proposals for the structural annotation and drug modulation mechanisms in this important sodium channel model.


Subject(s)
Ion Channel Gating , Voltage-Gated Sodium Channels , Ion Channel Gating/physiology , Voltage-Gated Sodium Channels/metabolism , Molecular Conformation , Membrane Potentials , Biophysical Phenomena
11.
Proc Natl Acad Sci U S A ; 119(50): e2210669119, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36480474

ABSTRACT

Pentameric ligand-gated ion channels (pLGICs) perform electrochemical signal transduction in organisms ranging from bacteria to humans. Among the prokaryotic pLGICs, there is architectural diversity involving N-terminal domains (NTDs) not found in eukaryotic relatives, exemplified by the calcium-sensitive channel (DeCLIC) from a Desulfofustis deltaproteobacterium, which has an NTD in addition to the canonical pLGIC structure. Here, we have characterized the structure and dynamics of DeCLIC through cryoelectron microscopy (cryo-EM), small-angle neutron scattering (SANS), and molecular dynamics (MD) simulations. In the presence and absence of calcium, cryo-EM yielded structures with alternative conformations of the calcium-binding site. SANS profiles further revealed conformational diversity at room temperature beyond that observed in static structures, shown through MD to be largely attributable to rigid-body motions of the NTD relative to the protein core, with expanded and asymmetric conformations improving the fit of the SANS data. This work reveals the range of motion available to the DeCLIC NTD and calcium-binding site, expanding the conformational landscape of the pLGIC family. Further, these findings demonstrate the power of combining low-resolution scattering, high-resolution structural, and MD simulation data to elucidate interfacial interactions that are highly conserved in the pLGIC family.


Subject(s)
Calcium , Deltaproteobacteria , Ligand-Gated Ion Channels , Cryoelectron Microscopy
12.
Proc Natl Acad Sci U S A ; 119(43): e2208081119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36251999

ABSTRACT

The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel that modulates neuronal excitability, largely by allowing Ca2+ permeation. Agonist binding promotes transition from a resting state to an activated state, and then rapidly to a desensitized state. Recently, cryogenic electron microscopy (cryo-EM) structures of the human α7 receptor in nanodiscs were reported in multiple conformations. These were selectively stabilized by inhibitory, activating, or potentiating compounds. However, the functional annotation of these structures and their differential interactions with unresolved lipids and ligands remain incomplete. Here, we characterized their ion permeation, membrane interactions, and ligand binding using computational electrophysiology, free-energy calculations, and coarse-grained molecular dynamics. In contrast to nonconductive structures in apparent resting and desensitized states, the structure determined in the presence of the potentiator PNU-120596 was consistent with an activated state permeable to Ca2+. Transition to this state was associated with compression and rearrangement of the membrane, particularly in the vicinity of the peripheral MX helix. An intersubunit transmembrane site was implicated in selective binding of either PNU-120596 in the activated state or cholesterol in the desensitized state. This substantiates functional assignment of all three lipid-embedded α7-receptor structures with ion-permeation simulations. It also proposes testable models of their state-dependent interactions with lipophilic ligands, including a mechanism for allosteric modulation at the transmembrane subunit interface.


Subject(s)
Ligand-Gated Ion Channels , Receptors, Nicotinic , Allosteric Regulation , Cholesterol , Humans , Isoxazoles , Ligand-Gated Ion Channels/metabolism , Ligands , Lipids , Phenylurea Compounds , Receptors, Nicotinic/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism
13.
Nat Commun ; 13(1): 4582, 2022 08 06.
Article in English | MEDLINE | ID: mdl-35933426

ABSTRACT

γ-Aminobutyric acid type A (GABAA) receptors are pentameric ligand-gated ion channels abundant in the central nervous system and are prolific drug targets for treating anxiety, sleep disorders and epilepsy. Diverse small molecules exert a spectrum of effects on γ-aminobutyric acid type A (GABAA) receptors by acting at the classical benzodiazepine site. They can potentiate the response to GABA, attenuate channel activity, or counteract modulation by other ligands. Structural mechanisms underlying the actions of these drugs are not fully understood. Here we present two high-resolution structures of GABAA receptors in complex with zolpidem, a positive allosteric modulator and heavily prescribed hypnotic, and DMCM, a negative allosteric modulator with convulsant and anxiogenic properties. These two drugs share the extracellular benzodiazepine site at the α/γ subunit interface and two transmembrane sites at ß/α interfaces. Structural analyses reveal a basis for the subtype selectivity of zolpidem that underlies its clinical success. Molecular dynamics simulations provide insight into how DMCM switches from a negative to a positive modulator as a function of binding site occupancy. Together, these findings expand our understanding of how GABAA receptor allosteric modulators acting through a common site can have diverging activities.


Subject(s)
Benzodiazepines , Receptors, GABA-A , Binding Sites/physiology , GABA Modulators/pharmacology , Receptors, GABA-A/metabolism , Zolpidem , gamma-Aminobutyric Acid
14.
Biochim Biophys Acta Biomembr ; 1864(10): 183994, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35724739

ABSTRACT

SARS-CoV-2 contains four structural proteins in its genome. These proteins aid in the assembly and budding of new virions at the ER-Golgi intermediate compartment (ERGIC). Current fundamental research efforts largely focus on one of these proteins - the spike (S) protein. Since successful antiviral therapies are likely to target multiple viral components, there is considerable interest in understanding the biophysical role of its other structural proteins, in particular structural membrane proteins. Here, we have focused our efforts on the characterization of the full-length envelope (E) protein from SARS-CoV-2, combining experimental and computational approaches. Recombinant expression of the full-length E protein from SARS-CoV-2 reveals that this membrane protein is capable of independent multimerization, possibly as a tetrameric or smaller species. Fluorescence microscopy shows that the protein localizes intracellularly, and coarse-grained MD simulations indicate it causes bending of the surrounding lipid bilayer, corroborating a potential role for the E protein in viral budding. Although we did not find robust electrophysiological evidence of ion-channel activity, cells transfected with the E protein exhibited reduced intracellular Ca2+, which may further promote viral replication. However, our atomistic MD simulations revealed that previous NMR structures are relatively unstable, and result in models incapable of ion conduction. Our study highlights the importance of using high-resolution structural data obtained from a full-length protein to gain detailed molecular insights, and eventually permitting virtual drug screening.


Subject(s)
COVID-19 , SARS-CoV-2 , Calcium , Humans , Viral Envelope Proteins/chemistry , Virus Assembly
15.
Biophys J ; 121(1): 11-22, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34890580

ABSTRACT

Voltage-gated sodium (Nav) channels play critical roles in propagating action potentials and otherwise manipulating ionic gradients in excitable cells. These channels open in response to membrane depolarization, selectively permeating sodium ions until rapidly inactivating. Structural characterization of the gating cycle in this channel family has proved challenging, particularly due to the transient nature of the open state. A structure from the bacterium Magnetococcus marinus Nav (NavMs) was initially proposed to be open, based on its pore diameter and voltage-sensor conformation. However, the functional annotation of this model, and the structural details of the open state, remain disputed. In this work, we used molecular modeling and simulations to test possible open-state models of NavMs. The full-length experimental structure, termed here the α-model, was consistently dehydrated at the activation gate, indicating an inability to conduct ions. Based on a spontaneous transition observed in extended simulations, and sequence/structure comparison to other Nav channels, we built an alternative π-model featuring a helix transition and the rotation of a conserved asparagine residue into the activation gate. Pore hydration, ion permeation, and state-dependent drug binding in this model were consistent with an open functional state. This work thus offers both a functional annotation of the full-length NavMs structure and a detailed model for a stable Nav open state, with potential conservation in diverse ion-channel families.


Subject(s)
Asparagine , Voltage-Gated Sodium Channels , Action Potentials/physiology , Humans , Models, Molecular , Sodium/metabolism , Voltage-Gated Sodium Channels/chemistry
16.
J Biol Chem ; 297(6): 101355, 2021 12.
Article in English | MEDLINE | ID: mdl-34717959

ABSTRACT

The ion pump Na+,K+-ATPase is a critical determinant of neuronal excitability; however, its role in the etiology of diseases of the central nervous system (CNS) is largely unknown. We describe here the molecular phenotype of a Trp931Arg mutation of the Na+,K+-ATPase catalytic α1 subunit in an infant diagnosed with therapy-resistant lethal epilepsy. In addition to the pathological CNS phenotype, we also detected renal wasting of Mg2+. We found that membrane expression of the mutant α1 protein was low, and ion pumping activity was lost. Arginine insertion into membrane proteins can generate water-filled pores in the plasma membrane, and our molecular dynamic (MD) simulations of the principle states of Na+,K+-ATPase transport demonstrated massive water inflow into mutant α1 and destabilization of the ion-binding sites. MD simulations also indicated that a water pathway was created between the mutant arginine residue and the cytoplasm, and analysis of oocytes expressing mutant α1 detected a nonspecific cation current. Finally, neurons expressing mutant α1 were observed to be depolarized compared with neurons expressing wild-type protein, compatible with a lowered threshold for epileptic seizures. The results imply that Na+,K+-ATPase should be considered a neuronal locus minoris resistentia in diseases associated with epilepsy and with loss of plasma membrane integrity.


Subject(s)
Epilepsy/genetics , Mutation, Missense , Sodium-Potassium-Exchanging ATPase/genetics , Animals , Anticonvulsants/pharmacology , Brain/drug effects , Brain/metabolism , Brain/pathology , Cells, Cultured , Drug Resistance , Epilepsy/drug therapy , Epilepsy/pathology , Humans , Infant , Molecular Dynamics Simulation , Mutation, Missense/drug effects , Protein Subunits/analysis , Protein Subunits/genetics , Sodium-Potassium-Exchanging ATPase/analysis , Xenopus
17.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: mdl-34504004

ABSTRACT

Pentameric ligand-gated ion channels undergo subtle conformational cycling to control electrochemical signal transduction in many kingdoms of life. Several crystal structures have now been reported in this family, but the functional relevance of such models remains unclear. Here, we used small-angle neutron scattering (SANS) to probe ambient solution-phase properties of the pH-gated bacterial ion channel GLIC under resting and activating conditions. Data collection was optimized by inline paused-flow size-exclusion chromatography, and exchanging into deuterated detergent to hide the micelle contribution. Resting-state GLIC was the best-fit crystal structure to SANS curves, with no evidence for divergent mechanisms. Moreover, enhanced-sampling molecular-dynamics simulations enabled differential modeling in resting versus activating conditions, with the latter corresponding to an intermediate ensemble of both the extracellular and transmembrane domains. This work demonstrates state-dependent changes in a pentameric ion channel by SANS, an increasingly accessible method for macromolecular characterization with the coming generation of neutron sources.


Subject(s)
Bacterial Proteins/chemistry , Ion Channel Gating , Ligand-Gated Ion Channels/chemistry , Neutrons , Protein Multimerization , Protein Structure, Quaternary , Scattering, Small Angle , Cyanobacteria/metabolism , Molecular Dynamics Simulation
18.
Life Sci Alliance ; 4(8)2021 08.
Article in English | MEDLINE | ID: mdl-34210687

ABSTRACT

Ligand-gated ion channels are critical mediators of electrochemical signal transduction across evolution. Biophysical and pharmacological characterization of these receptor proteins relies on high-quality structures in multiple, subtly distinct functional states. However, structural data in this family remain limited, particularly for resting and intermediate states on the activation pathway. Here, we report cryo-electron microscopy (cryo-EM) structures of the proton-activated Gloeobacter violaceus ligand-gated ion channel (GLIC) under three pH conditions. Decreased pH was associated with improved resolution and side chain rearrangements at the subunit/domain interface, particularly involving functionally important residues in the ß1-ß2 and M2-M3 loops. Molecular dynamics simulations substantiated flexibility in the closed-channel extracellular domains relative to the transmembrane ones and supported electrostatic remodeling around E35 and E243 in proton-induced gating. Exploration of secondary cryo-EM classes further indicated a low-pH population with an expanded pore. These results allow us to define distinct protonation and activation steps in pH-stimulated conformational cycling in GLIC, including interfacial rearrangements largely conserved in the pentameric channel family.


Subject(s)
Cyanobacteria/metabolism , Ligand-Gated Ion Channels/chemistry , Bacterial Proteins/chemistry , Cryoelectron Microscopy , Cyanobacteria/chemistry , Hydrogen-Ion Concentration , Models, Molecular , Molecular Dynamics Simulation , Protein Conformation , Protein Domains
19.
J Mol Biol ; 433(17): 167128, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34224751

ABSTRACT

The superfamily of pentameric ligand-gated ion channels (pLGICs) comprises key players in electrochemical signal transduction across evolution, including historic model systems for receptor allostery and targets for drug development. Accordingly, structural studies of these channels have steadily increased, and now approach 250 depositions in the protein data bank. This review contextualizes currently available structures in the pLGIC family, focusing on morphology, ligand binding, and gating in three model subfamilies: the prokaryotic channel GLIC, the cation-selective nicotinic acetylcholine receptor, and the anion-selective glycine receptor. Common themes include the challenging process of capturing and annotating channels in distinct functional states; partially conserved gating mechanisms, including remodeling at the extracellular/transmembrane-domain interface; and diversity beyond the protein level, arising from posttranslational modifications, ligands, lipids, and signaling partners. Interpreting pLGIC structures can be compared to describing an elephant in the dark, relying on touch alone to comprehend the many parts of a monumental beast: each structure represents a snapshot in time under specific experimental conditions, which must be integrated with further structure, function, and simulations data to build a comprehensive model, and understand how one channel may fundamentally differ from another.


Subject(s)
Ion Channel Gating/physiology , Ligand-Gated Ion Channels/metabolism , Animals , Cell Membrane/metabolism , Humans , Ligands , Protein Domains/physiology , Signal Transduction/physiology
20.
J Biol Chem ; 297(2): 100899, 2021 08.
Article in English | MEDLINE | ID: mdl-34157288

ABSTRACT

Pentameric ligand-gated ion channels (pLGICs) are crucial mediators of electrochemical signal transduction in various organisms from bacteria to humans. Lipids play an important role in regulating pLGIC function, yet the structural bases for specific pLGIC-lipid interactions remain poorly understood. The bacterial channel ELIC recapitulates several properties of eukaryotic pLGICs, including activation by the neurotransmitter GABA and binding and modulation by lipids, offering a simplified model system for structure-function relationship studies. In this study, functional effects of noncanonical amino acid substitution of a potential lipid-interacting residue (W206) at the top of the M1-helix, combined with detergent interactions observed in recent X-ray structures, are consistent with this region being the location of a lipid-binding site on the outward face of the ELIC transmembrane domain. Coarse-grained and atomistic molecular dynamics simulations revealed preferential binding of lipids containing a positive charge, particularly involving interactions with residue W206, consistent with cation-π binding. Polar contacts from other regions of the protein, particularly M3 residue Q264, further support lipid binding via headgroup ester linkages. Aromatic residues were identified at analogous sites in a handful of eukaryotic family members, including the human GABAA receptor ε subunit, suggesting conservation of relevant interactions in other evolutionary branches. Further mutagenesis experiments indicated that mutations at this site in ε-containing GABAA receptors can change the apparent affinity of the agonist response to GABA, suggesting a potential role of this site in channel gating. In conclusion, this work details type-specific lipid interactions, which adds to our growing understanding of how lipids modulate pLGICs.


Subject(s)
Crystallography, X-Ray/methods , Ligand-Gated Ion Channels/metabolism , Lipids/chemistry , Oocytes/metabolism , Animals , Cations/chemistry , Cell Line , Humans , Ligand-Gated Ion Channels/chemistry , Ligand-Gated Ion Channels/genetics , Models, Molecular , Oocytes/cytology , Protein Binding , Protein Structural Elements , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...