Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Nat Neurosci ; 27(5): 811, 2024 May.
Article in English | MEDLINE | ID: mdl-38724602
2.
J Neurosci Methods ; 408: 110177, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795978

ABSTRACT

BACKGROUND: Data on human brain function obtained with direct electrical stimulation (DES) in neurosurgical patients have been recently integrated and combined with modern neuroimaging techniques, allowing a connectome-based approach fed by intraoperative DES data. Within this framework is crucial to develop reliable methods for spatial localization of DES-derived information to be integrated within the neuroimaging workflow. NEW METHOD: To this aim, we applied the Kernel Density Estimation for modelling the distribution of DES sites from different patients into the MNI space. The algorithm has been embedded in a MATLAB-based User Interface, Peaglet. It allows an accurate probabilistic weighted and unweighted estimation of DES sites location both at cortical level, by using shortest path calculation along the brain 3D geometric topology, and subcortical level, by using a volume-based approach. RESULTS: We applied Peaglet to investigate spatial estimation of cortical and subcortical stimulation sites provided by recent brain tumour studies. The resulting NIfTI maps have been anatomically investigated with neuroimaging open-source tools. COMPARISON WITH EXISTING METHODS: Peaglet processes differently cortical and subcortical data following their distinguishing geometrical features, increasing anatomical specificity of DES-related results and their reliability within neuroimaging environments. CONCLUSIONS: Peaglet provides a robust probabilistic estimation of the cortical and subcortical distribution of DES sites going beyond a region of interest approach, respecting cortical and subcortical intrinsic geometrical features. Results can be easily integrated within the neuroimaging workflow to drive connectomic analysis.

3.
Nat Neurosci ; 27(4): 606, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38589546
4.
BMC Psychiatry ; 24(1): 287, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627646

ABSTRACT

BACKGROUND: Childhood maltreatment (CM) is associated with neurobiological aberrations and atypical social cognition. Few studies have examined the neural effects of another common early-life interpersonal stressor, namely peer victimisation (PV). This study examines the associations between tract aberrations and childhood interpersonal stress from caregivers (CM) and peers (PV), and explores how the observed tract alterations are in turn related to affective theory of mind (ToM). METHODS: Data from 107 age-and gender-matched youths (34 CM [age = 19.9 ± 1.68; 36%male], 35 PV [age = 19.9 ± 1.65; 43%male], 38 comparison subjects [age = 20.0 ± 1.66; 42%male] were analysed using tractography and whole-brain tract-based spatial statistics (TBSS). RESULTS: At the whole-brain level using TBSS, the CM group had higher fractional anisotropy (FA) than the PV and comparison groups in a cluster of predominantly limbic and corpus callosal pathways. Segmented tractography indicated the CM group had higher FA in right uncinate fasciculus compared to both groups. They also had smaller right anterior thalamic radiation (ATR) tract volume than the comparison group and higher left ATR FA than the PV group, with these metrics associated with higher emotional abuse and enhanced affective ToM within the CM group, respectively. The PV group had lower inferior fronto-occipital fasciculus FA than the other two groups, which was related to lower affective ToM within the PV group. CONCLUSION: Findings suggest that exposure to early-life stress from caregivers and peers are differentially associated with alterations of neural pathways connecting the frontal, temporal and occipital cortices involved in cognitive and affective control, with possible links to their atypical social cognition.


Subject(s)
Child Abuse , White Matter , Adolescent , Humans , Male , Young Adult , Adult , Child , Social Cognition , Diffusion Tensor Imaging , Brain/diagnostic imaging , White Matter/diagnostic imaging , Anisotropy
5.
Neuropsychol Rev ; 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36967445

ABSTRACT

Attention, working memory, and executive control are commonly considered distinct cognitive functions with important reciprocal interactions. Yet, longstanding evidence from lesion studies has demonstrated both overlap and dissociation in their behavioural expression and anatomical underpinnings, suggesting that a lower dimensional framework could be employed to further identify processes supporting goal-directed behaviour. Here, we describe the anatomical and functional correspondence between attention, working memory, and executive control by providing an overview of cognitive models, as well as recent data from lesion studies, invasive and non-invasive multimodal neuroimaging and brain stimulation. We emphasize the benefits of considering converging evidence from multiple methodologies centred on the identification of brain mechanisms supporting goal-driven behaviour. We propose that expanding on this approach should enable the construction of a comprehensive anatomo-functional framework with testable new hypotheses, and aid clinical neuroscience to intervene on impairments of executive functions.

6.
Neuroimage ; 248: 118839, 2022 03.
Article in English | MEDLINE | ID: mdl-34963652

ABSTRACT

In primates, the parietal cortex plays a crucial role in hand-object manipulation. However, its involvement in object manipulation and related hand-muscle control has never been investigated in humans with a direct and focal electrophysiological approach. To this aim, during awake surgery for brain tumors, we studied the impact of direct electrical stimulation (DES) of parietal lobe on hand-muscles during a hand-manipulation task (HMt). Results showed that DES applied to fingers-representation of postcentral gyrus (PCG) and anterior intraparietal cortex (aIPC) impaired HMt execution. Different types of EMG-interference patterns were observed ranging from a partial (task-clumsy) or complete (task-arrest) impairment of muscles activity. Within PCG both patterns coexisted along a medio (arrest)-lateral (clumsy) distribution, while aIPC hosted preferentially the task-arrest. The interference patterns were mainly associated to muscles suppression, more pronounced in aIPC with respect to PCG. Moreover, within PCG were observed patterns with different level of muscle recruitment, not reported in the aIPC. Overall, EMG-interference patterns and their probabilistic distribution suggested the presence of different functional parietal sectors, possibly playing different roles in hand-muscle control during manipulation. We hypothesized that task-arrest, compared to clumsy patterns, might suggest the existence of parietal sectors more closely implicated in shaping the motor output.


Subject(s)
Electric Stimulation , Hand/physiology , Motor Activity/physiology , Muscle, Skeletal/physiology , Parietal Lobe/physiology , Somatosensory Cortex/physiology , Adult , Aged , Electromyography , Female , Humans , Male , Middle Aged
7.
Brain Struct Funct ; 227(2): 529-544, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34731328

ABSTRACT

Inter-individual differences can inform treatment procedures and-if accounted for-have the potential to significantly improve patient outcomes. However, when studying brain anatomy, these inter-individual variations are commonly unaccounted for, despite reports of differences in gross anatomical features, cross-sectional, and connectional anatomy. Brain connections are essential to facilitate functional organization and, when severed, cause impairments or complete loss of function. Hence, the study of cerebral white matter may be an ideal compromise to capture inter-individual variability in structure and function. We reviewed the wealth of studies that associate cognitive functions and clinical symptoms with individual tracts using diffusion tractography. Our systematic review indicates that tractography has proven to be a sensitive method in neurology, psychiatry, and healthy populations to identify variability and its functional correlates. However, the literature may be biased, as the most commonly studied tracts are not necessarily those with the highest sensitivity to cognitive functions and pathologies. Additionally, the hemisphere of the studied tract is often unreported, thus neglecting functional laterality and asymmetries. Finally, we demonstrate that tracts, as we define them, are not correlated with one, but multiple cognitive domains or pathologies. While our systematic review identified some methodological caveats, it also suggests that tract-function correlations might still be a promising tool in identifying biomarkers for precision medicine. They can characterize variations in brain anatomy, differences in functional organization, and predicts resilience and recovery in patients.


Subject(s)
White Matter , Brain/diagnostic imaging , Cognition , Cross-Sectional Studies , Diffusion Tensor Imaging , Humans , White Matter/diagnostic imaging
8.
Brain ; 145(4): 1535-1550, 2022 05 24.
Article in English | MEDLINE | ID: mdl-34623420

ABSTRACT

The activity of frontal motor areas during hand-object interaction is coordinated by dense communication along specific white matter pathways. This architecture allows the continuous shaping of voluntary motor output but, despite extensive investigation in non-human primate studies, remains poorly understood in humans. Disclosure of this system is crucial for predicting and treatment of motor deficits after brain lesions. For this purpose, we investigated the effect of direct electrical stimulation on white matter pathways within the frontal lobe on hand-object manipulation. This was tested in 34 patients (15 left hemisphere, mean age 42 years, 17 male, 15 with tractography) undergoing awake neurosurgery for frontal lobe tumour removal with the aid of the brain mapping technique. The stimulation outcome was quantified based on hand-muscle activity required by task execution. The white matter pathways responsive to stimulation with an interference on muscles were identified by means of probabilistic density estimation of stimulated sites, tract-based lesion-symptom (disconnectome) analysis and diffusion tractography on the single patient level. Finally, we assessed the effect of permanent tract disconnection on motor outcome in the immediate postoperative period using a multivariate lesion-symptom mapping approach. The analysis showed that stimulation disrupted hand-muscle activity during task execution at 66 sites within the white matter below dorsal and ventral premotor regions. Two different EMG interference patterns associated with different structural architectures emerged: (i) an 'arrest' pattern, characterized by complete impairment of muscle activity associated with an abrupt task interruption, occurred when stimulating a white matter area below the dorsal premotor region. Local middle U-shaped fibres, superior fronto-striatal, corticospinal and dorsal fronto-parietal fibres intersected with this region. (ii) a 'clumsy' pattern, characterized by partial disruption of muscle activity associated with movement slowdown and/or uncoordinated finger movements, occurred when stimulating a white matter area below the ventral premotor region. Ventral fronto-parietal and inferior fronto-striatal tracts intersected with this region. Finally, only resections partially including the dorsal white matter region surrounding the supplementary motor area were associated with transient upper-limb deficit (P = 0.05; 5000 permutations). Overall, the results identify two distinct frontal white matter regions possibly mediating different aspects of hand-object interaction via distinct sets of structural connectivity. We suggest the dorsal region, associated with arrest pattern and postoperative immediate motor deficits, to be functionally proximal to motor output implementation, while the ventral region may be involved in sensorimotor integration required for task execution.


Subject(s)
Hand , Motor Cortex , Brain Mapping/methods , Diffusion Tensor Imaging , Frontal Lobe/physiology , Hand/physiology , Humans , Male , Motor Cortex/physiology , Muscle, Skeletal/physiology , Neural Pathways/physiology
9.
Front Oncol ; 11: 662039, 2021.
Article in English | MEDLINE | ID: mdl-34094955

ABSTRACT

OBJECTIVE: At present, it is not clear whether Mood Disorders (MD) and poor Health Related Quality of Life (HRQoL) in the glioma population correlate with features of the tumor, or rather with secondary symptoms associated with treatment. The aim of this study was to assess the prevalence of MD and decline in HRQoL in glioma patients, and to determine the main factors associated with these two variables. METHODS: 80 patients affected by lower-grade gliomas (LGGs) and 65 affected by high-grade gliomas (HGGs) were evaluated, from admission up to 12 months after surgery, for MD, HRQoL, clinical characteristics, and cognitive functions. Independent factors associated with MD and low HRQoL were identified by using bivariate analysis. RESULTS: Data showed that prevalence of low HRQoL was comparable in both groups during all the time points assessed (pre, 1, 3, 6 and 12 months after surgery). In contrast at 6 months following surgery, HGGs showed a higher prevalence of MD compared to LGGs;. Bivariate analysis revealed that factors associated with MD and HRQoL in LGGs and HGGs were different over the course of the disease. In LGGs, from the pre-operative period to one year post surgery, MD and low HRQOL were associated with the occurrence of cognitive deficits and, from the third month after surgery onward, they were also associated with the effect exerted by adjuvant treatments. In HGGs, MD were associated with cognitive deficits at 3 and 6 months after surgery, along with older age (65-75 years); HRQoL, in its Physical component in particular, was associated with older age only from 6 months after surgery. CONCLUSION: Factors associated with MD and low HRQoL were different in LGGs and HGGs over the course of the disease. In LGGs the effect of adjuvant treatments was prominent in determining the prevalence of both MD and poor HRQoL from the third month after surgery onward. In HGGs, MD and HRQoL were associated with age, at 3 and 6 months after surgery. In both, the occurrence of cognitive deficits was significantly associated with MD.

10.
Front Oncol ; 11: 629166, 2021.
Article in English | MEDLINE | ID: mdl-33828981

ABSTRACT

OBJECTIVE: Giant insular tumors are commonly not amenable to complete resection and are associated with a high postoperative morbidity rate. Transcortical approach and brain mapping techniques allow to identify peri-insular functional networks and, with neurophysiological monitoring, to reduce vascular-associated insults. Cognitive functions to be mapped are still under debate, and the analysis of the functional risk of surgery is currently limited to neurological examination. This work aimed to investigate the neurosurgical outcome (extent of resection, EOR) and functional impact of giant insular gliomas resection, focusing on neuropsychological and Quality of Life (QoL) outcomes. METHODS: In our retrospective analysis, we included all patients admitted in a five-year period with a radiological diagnosis of giant insular glioma. A transcortical approach was adopted in all cases. Resections were pursued up to functional boundaries defined intraoperatively by brain mapping techniques. We examined clinical, radiological, and intra-operative factors possibly affecting EOR and postoperative neurological, neuropsychological, and Quality of Life (QoL) outcomes. RESULTS: We finally enrolled 95 patients in the analysis. Mean EOR was 92.3%. A Gross Total Resection (GTR) was obtained in 70 cases (73.7%). Five patients reported permanent morbidity (aphasia in 3, 3.2%, and superior quadrantanopia in 2, 2.1%). Suboptimal EOR associated with poor seizures control postoperatively. Extensive intraoperative mapping (inclusive of cognitive, visual, and haptic functions) decreased long-term neurological, neuropsychological, and QoL morbidity and increased EOR. Tumor infiltration of deep perforators (vessels arising either medial to lenticulostriate arteries through the anterior perforated substance or from the anterior choroidal artery) associated with a higher chance of postoperative ischemia in consonant areas, with the persistence of new-onset motor deficits 1-month post-op, and with minor EOR. Ischemic insults in eloquent sites represented the leading factor for long-term neurological and neuropsychological morbidity. CONCLUSION: In giant insular gliomas, the use of a transcortical approach with extensive brain mapping under awake anesthesia ensures broad insular exposure and extension of the surgical resection preserving patients' functional integrity. The relation between tumor mass and deep perforators predicts perioperative ischemic insults, the most relevant risk factor for long-term and permanent postoperative morbidity.

11.
J Neurosci ; 41(19): 4223-4233, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33827936

ABSTRACT

Fine motor skills rely on the control of hand muscles exerted by a region of primary motor cortex (M1) that has been extensively investigated in monkeys. Although neuroimaging enables the exploration of this system also in humans, indirect measurements of brain activity prevent causal definitions of hand motor representations, which can be achieved using data obtained during brain mapping in tumor patients. High-frequency direct electrical stimulation delivered at rest (HF-DES-Rest) on the hand-knob region of the precentral gyrus has identified two sectors showing differences in cortical excitability. Using quantitative analysis of motor output elicited with HF DES-Rest, we characterized two sectors based on their excitability, higher in the posterior and lower in the anterior sector. We studied whether the different cortical excitability of these two regions reflected differences in functional connectivity (FC) and structural connectivity (SC). Using healthy adults from the Human Connectome Project (HCP), we computed FC and SC of the anterior and the posterior hand-knob sectors identified within a large cohort of patients. The comparison of FC of the two seeds showed that the anterior hand-knob, relative to the posterior hand-knob, showed stronger functional connections with a bilateral set of parietofrontal areas responsible for integrating perceptual and cognitive hand-related sensorimotor processes necessary for goal-related actions. This was reflected in different patterns of SC between the two sectors. Our results suggest that the human hand-knob is a functionally and structurally heterogeneous region organized along a motor-cognitive gradient.SIGNIFICANCE STATEMENT The capability to perform complex manipulative tasks is one of the major characteristics of primates and relies on the fine control of hand muscles exerted by a highly specialized region of the precentral gyrus, often termed the "hand-knob" sector. Using intraoperative brain mapping, we identify two hand-knob sectors (posterior and anterior) characterized by differences in cortical excitability. Based on resting-state functional connectivity (FC) and tractography in healthy subjects, we show that posterior and anterior hand-knob sectors differ in their functional connectivity (FC) and structural connectivity (SC) with frontoparietal regions. Thus, anteroposterior differences in cortical excitability are paralleled by differences in FC and SC that likely reflect a motor (posterior) to cognitive (anterior) organization of this cortical region.


Subject(s)
Hand/physiology , Motor Skills/physiology , Muscle, Skeletal/physiology , Adolescent , Adult , Aged , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Cognition , Connectome , Evoked Potentials, Motor/physiology , Female , Frontal Lobe/diagnostic imaging , Frontal Lobe/physiology , Hand/innervation , Humans , Intraoperative Period , Magnetic Resonance Imaging , Male , Middle Aged , Motor Cortex , Muscle, Skeletal/innervation , Neural Pathways/physiology , Transcranial Direct Current Stimulation , Visual Perception/physiology , Young Adult
12.
Cortex ; 137: 194-204, 2021 04.
Article in English | MEDLINE | ID: mdl-33640851

ABSTRACT

A negative motor response (NMR) is defined as the inability to continue voluntary movements without losing consciousness when direct electrical stimulation (DES) is applied during awake neurosurgery. While visual inspection is most commonly used to define an NMR, the actual effect of stimulation on muscle activity has been neglected by recent neurosurgical literature. We show that behavioral assessment of NMRs hides different site-dependent effects on muscles as revealed by electromyography (EMG), describing ten cases of brain tumor patients undergoing awake neurosurgery while performing a hand-object manipulation task. DES-induced NMRs were assessed behaviorally and related to the underlying electromyographic recording. Quantitative analysis of motor unit recruitment and regularity between phasic muscle contractions was computed. We show that similar NMRs classified based on behavioral criteria can be associated with suppression, increased recruitment or mixed effects on ongoing hand muscles. In some cases, suppression of hand muscle activity is associated with involuntary recruitment of muscles not involved in the task. Interestingly, stimulation of behaviorally defined "negative areas" across the frontal and parietal lobes elicits different electromyographic patterns, depending on the stimulation site. This study provides novel preliminary background as to the heterogeneous profile of muscle activity during NMRs. In fact, EMG monitoring paired with behavioral assessment can distinguish between NMRs that, despite similarity on behavioral inspection, are different in their related EMG, possibly underlying different neural substrates. The identification of different circuits hidden in similar NMRs may become relevant when planning the extension of resection.


Subject(s)
Hand , Muscle, Skeletal , Electric Stimulation , Electromyography , Humans , Muscle Contraction
13.
Neurosurgery ; 88(3): 457-467, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33476393

ABSTRACT

Resection of brain tumors involving motor areas and pathways requires the identification and preservation of various cortical and subcortical structures involved in motor control at the time of the procedure, in order to maintain the patient's full motor capacities. The use of brain mapping techniques has now been integrated into clinical practice for many years, as they help the surgeon to identify the neural structures involved in motor functions. A common definition of motor function, as well as knowledge of its neural organization, has been continuously evolving, underlining the need for implementing intraoperative strategies at the time of the procedure. Similarly, mapping strategies have been subjected to continuous changes, enhancing the likelihood of preservation of full motor capacities. As a general rule, the motor mapping strategy should be as flexible as possible and adapted strictly to the individual patient and clinical context of the tumor. In this work, we present an overview of current knowledge of motor organization, indications for motor mapping, available motor mapping, and monitoring strategies, as well as their advantages and limitations. The use of motor mapping improves resection and outcomes in patients harboring tumors involving motor areas and pathways, and should be considered the gold standard in the resection of this type of tumor.


Subject(s)
Brain Mapping/methods , Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Intraoperative Neurophysiological Monitoring/methods , Motor Cortex/diagnostic imaging , Brain Neoplasms/surgery , Female , Glioma/surgery , Humans , Male , Motor Cortex/surgery
14.
Front Oncol ; 10: 1485, 2020.
Article in English | MEDLINE | ID: mdl-32983985

ABSTRACT

Objective: The intraoperative identification and preservation of optic radiations (OR) during tumor resection requires the patient to be awake. Different tasks are used. However, they do not grant the maintenance of foveal vision during all testing, limiting the ability to constantly monitor the peripheral vision and to inform about the portion of the peripheral field that is encountered. Although hemianopia can be prevented, quadrantanopia cannot be properly avoided. To overcome these limitations, we developed an intra-operative Visual field Task (iVT) to monitor the foveal vision, alerting about the likelihood of injuring the OR during task administration, and to inform about the portion of the peripheral field that is explored. Data on feasibility and efficacy in preventing visual field deficits are reported, comparing the outcome with the standard available task (Double-Picture-Naming-Task, DPNT). Methods: Patients with a temporal and/or parietal lobe tumor in close morphological relationship with the OR, or where the resection can involve the OR at any extent, without pre-operative visual-field deficits (Humphrey) were enrolled. Fifty-four patients were submitted to iVT, 38 to DPNT during awake surgery with brain mapping neurophysiological techniques. Feasibility was assessed as ease of administration, training and mapping time, and ability to alert about the loss of foveal vision. Type and location of evoked interferences were registered. Functional outcome was evaluated by manual and Humphrey test; extent of resection was recorded. Tractography was performed in a sample of patients to compare patient anatomy with intraoperative stimulation site(s). Results: The test was easy to administer and detected the loss of foveal vision in all cases. Stimulation induced visual-field interferences, detected in all patients, classified as detection or discrimination errors. Detection was mostly observed in temporal tumors, discrimination in temporo-parietal ones. Immediate visual disturbances in DPNT group were registered in 84 vs. 24% of iVT group. At 1-month Humphrey evaluation, 26% of iVT vs. 63% of DPNT had quadrantanopia (32% symptomatic); 10% of DPNT had hemianopia. EOR was similar. Detection errors were induced for stimulation of OR; discrimination also for other visual processing tract (ILF). Conclusion: iVT was feasible and sensitive to preserve the functional integrity of the OR.

15.
Brain Struct Funct ; 225(8): 2533-2551, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32936342

ABSTRACT

Cortico-cortical networks involved in motor control have been well defined in the macaque using a range of invasive techniques. The advent of neuroimaging has enabled non-invasive study of these large-scale functionally specialized networks in the human brain; however, assessing its accuracy in reproducing genuine anatomy is more challenging. We set out to assess the similarities and differences between connections of macaque motor control networks defined using axonal tracing and those reproduced using structural and functional connectivity techniques. We processed a cohort of macaques scanned in vivo that were made available by the open access PRIME-DE resource, to evaluate connectivity using diffusion imaging tractography and resting state functional connectivity (rs-FC). Sectors of the lateral grasping and exploratory oculomotor networks were defined anatomically on structural images, and connections were reproduced using different structural and functional approaches (probabilistic and deterministic whole-brain and seed-based tractography; group template and native space functional connectivity analysis). The results showed that parieto-frontal connections were best reproduced using both structural and functional connectivity techniques. Tractography showed lower sensitivity but better specificity in reproducing connections identified by tracer data. Functional connectivity analysis performed in native space had higher sensitivity but lower specificity and was better at identifying connections between intrasulcal ROIs than group-level analysis. Connections of AIP were most consistently reproduced, although those connected with prefrontal sectors were not identified. We finally compared diffusion MR modelling with histology based on an injection in AIP and speculate on anatomical bases for the observed false negatives. Our results highlight the utility of precise ex vivo techniques to support the accuracy of neuroimaging in reproducing connections, which is relevant also for human studies.


Subject(s)
Brain/diagnostic imaging , Nerve Net/diagnostic imaging , Psychomotor Performance/physiology , Visual Pathways/diagnostic imaging , Animals , Connectome , Diffusion Tensor Imaging , Female , Macaca mulatta , Magnetic Resonance Imaging , Male , Neuroimaging
16.
Neurosci Biobehav Rev ; 116: 406-414, 2020 09.
Article in English | MEDLINE | ID: mdl-32659288

ABSTRACT

We conducted the first meta-analysis of whole-brain voxel-based DTI studies in childhood maltreatment to elucidate regions of white matter (WM) microstructure abnormality relative to non-maltreated controls. Fourteen DTI datasets were included, comprising 386 individuals with childhood maltreatment and 612 non-maltreated controls. Anisotropic effect-size signed differential mapping, a voxel-based meta-analytic method, was used to examine regions of altered fractional anisotropy (FA) in maltreated individuals relative to controls. Maltreated individuals had significantly reduced FA in the left anterior thalamic radiation and bilateral fornix, optic radiations, inferior longitudinal fasciculus, and inferior frontal-occipital fasciculus, along with the anterior portions of the corpus callosum. There were no regions with increased FA. Decreased FA in the callosal genu and body remained in subgroup analyses of unmedicated and drug-free participants. Findings suggest that childhood maltreatment is associated with widespread WM microstructural abnormalities particularly evident in the fornix, corpus callosum and optic radiations, where the neural pathways linking fronto-limbic and occipital visual cortices presumably involved in conveying and processing the (aversive) experience may be compromised in this population.


Subject(s)
Diffusion Tensor Imaging , White Matter , Anisotropy , Brain/diagnostic imaging , Humans , Neural Pathways/diagnostic imaging , White Matter/diagnostic imaging
17.
Cortex ; 128: 297-311, 2020 07.
Article in English | MEDLINE | ID: mdl-32362441

ABSTRACT

Strong right-hand preference on the population level is a uniquely human feature, although its neural basis is still not clearly defined. Recent behavioural and neuroimaging literature suggests that hand preference may be related to the orchestrated function and size of fronto-parietal white matter tracts bilaterally. Lesions to these tracts induced during tumour resection may provide an opportunity to test this hypothesis. In the present study, a cohort of seventeen neurosurgical patients with left hemisphere brain tumours were recruited to investigate whether resection of certain white matter tracts affects the choice of hand selected for the execution of a goal-directed task (assembly of jigsaw puzzles). Patients performed the puzzles, but also tests for basic motor ability, selective attention and visuo-constructional ability, preoperatively and one month after surgery. An atlas-based disconnectome analysis was conducted to evaluate whether resection of tracts was significantly associated with changes in hand selection. Diffusion tractography was also used to dissect fronto-parietal tracts (the superior longitudinal fasciculus) and the corticospinal tract. Results showed a shift in hand selection despite the absence of any motor or cognitive deficits, which was significantly associated with frontal and parietal resections rather than other lobes. In particular, the shift in hand selection was significantly associated with the resection of dorsal rather than ventral fronto-parietal white matter connections. Dorsal white matter pathways contribute bilaterally to control of goal-directed hand movements. We show that unilateral lesions, that may unbalance the cooperation of the two hemispheres, can alter the choice of hand selected to accomplish movements.


Subject(s)
Neurosurgery , White Matter , Diffusion Tensor Imaging , Humans , Nerve Net , Neural Pathways , Neurosurgical Procedures , White Matter/diagnostic imaging
18.
J Neurosurg ; 134(5): 1368-1376, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32357341

ABSTRACT

OBJECTIVE: This prospective case-control study was conducted to examine whether spherical deconvolution (SD) can unveil microstructural abnormalities in the corticospinal tract (CST) caused by IDH-mutant gliomas. To determine the significance of abnormal microstructure, the authors investigated the correlation between diffusion parameters and neurophysiological data collected with navigated transcranial magnetic stimulation (nTMS). METHODS: Twenty participants (10 patients and 10 healthy controls) were recruited. Diffusion-weighted images were acquired on a 3-T MRI scanner using a cardiac-gated single-shot spin echo echo-planar imaging multiband sequence (TE 80 msec, TR 4000 msec) along 90 diffusion directions with a b-value of 2500 sec/mm2 (FOV 256 × 256 mm). Diffusion tensor imaging tractography and SD tractography were performed with deterministic tracking. The anterior portion of the ipsilateral superior peduncle and the precentral gyrus were used as regions of interest to delineate the CST. Diffusion indices were extracted and analyzed for significant differences between hemispheres in patients and between patient and control groups. A navigated brain stimulation system was used to deliver TMS pulses at hotspots at which motor evoked potentials (MEPs) for the abductor pollicis brevis, first digital interosseous, and abductor digiti minimi muscles are best elicited in patients and healthy controls. Functional measurements such as resting motor threshold (rMT), amplitude of MEPs, and latency of MEPs were noted. Significant differences between hemispheres in patients and between patients and controls were statistically analyzed. The Spearman rank correlation was used to investigate correlations between diffusion indices and functional measurements. RESULTS: The hindrance modulated orientational anisotropy (HMOA), measured with SD tractography, is lower in the hemisphere ipsilateral to glioma (p = 0.028). The rMT in the hemisphere ipsilateral to a glioma is significantly greater than that in the contralateral hemisphere (p = 0.038). All measurements contralateral to the glioma, except for the mean amplitude of MEPs (p = 0.001), are similar to those of healthy controls. Mean diffusivity and axial diffusivity from SD tractography are positively correlated with rMT in the hemisphere ipsilateral to glioma (p = 0.02 and 0.006, respectively). The interhemispheric difference in HMOA and rMT is correlated in glioma patients (p = 0.007). CONCLUSIONS: SD tractography can demonstrate microstructural abnormality within the CST of patients with IDH1-mutant gliomas that correlates to the functional abnormality measured with nTMS.


Subject(s)
Astrocytoma/pathology , Brain Neoplasms/pathology , Diffusion Tensor Imaging , Motor Cortex/physiopathology , Neuroimaging , Oligodendroglioma/pathology , Pyramidal Tracts/ultrastructure , Transcranial Magnetic Stimulation/methods , Adult , Anisotropy , Astrocytoma/genetics , Astrocytoma/physiopathology , Astrocytoma/surgery , Brain Neoplasms/genetics , Brain Neoplasms/physiopathology , Brain Neoplasms/surgery , Case-Control Studies , Female , Humans , Isocitrate Dehydrogenase/deficiency , Isocitrate Dehydrogenase/genetics , Male , Middle Aged , Motor Cortex/diagnostic imaging , Oligodendroglioma/genetics , Oligodendroglioma/physiopathology , Oligodendroglioma/surgery , Prospective Studies , Pyramidal Tracts/diagnostic imaging , Young Adult
20.
J Neurosci ; 40(10): 2094-2107, 2020 03 04.
Article in English | MEDLINE | ID: mdl-31949106

ABSTRACT

The frontal lobe is central to distinctive aspects of human cognition and behavior. Some comparative studies link this to a larger frontal cortex and even larger frontal white matter in humans compared with other primates, yet others dispute these findings. The discrepancies between studies could be explained by limitations of the methods used to quantify volume differences across species, especially when applied to white matter connections. In this study, we used a novel tractography approach to demonstrate that frontal lobe networks, extending within and beyond the frontal lobes, occupy 66% of total brain white matter in humans and 48% in three monkey species: vervets (Chlorocebus aethiops), rhesus macaque (Macaca mulatta) and cynomolgus macaque (Macaca fascicularis), all male. The simian-human differences in proportional frontal tract volume were significant for projection, commissural, and both intralobar and interlobar association tracts. Among the long association tracts, the greatest difference was found for tracts involved in motor planning, auditory memory, top-down control of sensory information, and visuospatial attention, with no significant differences in frontal limbic tracts important for emotional processing and social behaviour. In addition, we found that a nonfrontal tract, the anterior commissure, had a smaller volume fraction in humans, suggesting that the disproportionally large volume of human frontal lobe connections is accompanied by a reduction in the proportion of some nonfrontal connections. These findings support a hypothesis of an overall rearrangement of brain connections during human evolution.SIGNIFICANCE STATEMENT Tractography is a unique tool to map white matter connections in the brains of different species, including humans. This study shows that humans have a greater proportion of frontal lobe connections compared with monkeys, when normalized by total brain white matter volume. In particular, tracts associated with language and higher cognitive functions are disproportionally larger in humans compared with monkeys, whereas other tracts associated with emotional processing are either the same or disproportionally smaller. This supports the hypothesis that the emergence of higher cognitive functions in humans is associated with increased extended frontal connectivity, allowing human brains more efficient cross talk between frontal and other high-order associative areas of the temporal, parietal, and occipital lobes.


Subject(s)
Frontal Lobe/anatomy & histology , Neural Pathways/anatomy & histology , White Matter/anatomy & histology , Animals , Brain Mapping/methods , Chlorocebus aethiops , Diffusion Tensor Imaging/methods , Humans , Image Processing, Computer-Assisted , Macaca fascicularis , Macaca mulatta , Male , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...