Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Microbiome ; 3(1): 12, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33499997

ABSTRACT

BACKGROUND: Across taxa, animals with depleted intestinal microbiomes show disrupted behavioral phenotypes. Axenic (i.e., microbe-free) mice, zebrafish, and fruit flies exhibit increased locomotor behavior, or hyperactivity. The mechanism through which bacteria interact with host cells to trigger normal neurobehavioral development in larval zebrafish is not well understood. Here, we monoassociated zebrafish with either one of six different zebrafish-associated bacteria, mixtures of these host-associates, or with an environmental bacterial isolate. RESULTS: As predicted, the axenic cohort was hyperactive. Monoassociation with three different host-associated bacterial species, as well as with the mixtures, resulted in control-like locomotor behavior. Monoassociation with one host-associate and the environmental isolate resulted in the hyperactive phenotype characteristic of axenic larvae, while monoassociation with two other host-associated bacteria partially blocked this phenotype. Furthermore, we found an inverse relationship between the total concentration of bacteria per larvae and locomotor behavior. Lastly, in the axenic and associated cohorts, but not in the larvae with complex communities, we detected unexpected bacteria, some of which may be present as facultative predators. CONCLUSIONS: These data support a growing body of evidence that individual species of bacteria can have different effects on host behavior, potentially related to their success at intestinal colonization. Specific to the zebrafish model, our results suggest that differences in the composition of microbes in fish facilities could affect the results of behavioral assays within pharmacological and toxicological studies.

2.
Environ Microbiol ; 22(8): 3494-3504, 2020 08.
Article in English | MEDLINE | ID: mdl-32510726

ABSTRACT

Bacterial growth efficiency (BGE) is the proportion of assimilated carbon that is converted into biomass and reflects the balance between growth and energetic demands. Often measured as an aggregate property of the community, BGE is highly variable within and across ecosystems. To understand this variation, we first identified how species identity and resource type affect BGE using 20 bacterial isolates belonging to the phylum Proteobacteria that were enriched from north temperate lakes. Using a trait-based approach that incorporated genomic and phenotypic information, we characterized the metabolism of each isolate and tested for predicted trade-offs between growth rate and efficiency. A substantial amount of variation in BGE could be explained at broad (i.e., order, 20%) and fine (i.e., strain, 58%) taxonomic levels. While resource type was a relatively weak predictor across species, it explained >60% of the variation in BGE within a given species. A metabolic trade-off (between maximum growth rate and efficiency) and genomic features revealed that BGE may be a species-specific metabolic property. Our study suggests that genomic and phylogenetic information may help predict aggregate microbial community functions like BGE and the fate of carbon in ecosystems.


Subject(s)
Bacteria/growth & development , Bacteria/metabolism , Energy Metabolism/physiology , Bacteria/genetics , Bacteria/isolation & purification , Biomass , Carbon/metabolism , Ecosystem , Lakes/microbiology , Microbiota/genetics , Phenotype , Phylogeny
3.
Environ Health Perspect ; 128(4): 47005, 2020 04.
Article in English | MEDLINE | ID: mdl-32271623

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are a diverse class of industrial chemicals with widespread environmental occurrence. Exposure to long-chain PFAS is associated with developmental toxicity, prompting their replacement with short-chain and fluoroether compounds. There is growing public concern over the safety of replacement PFAS. OBJECTIVE: We aimed to group PFAS based on shared toxicity phenotypes. METHODS: Zebrafish were developmentally exposed to 4,8-dioxa-3H-perfluorononanoate (ADONA), perfluoro-2-propoxypropanoic acid (GenX Free Acid), perfluoro-3,6-dioxa-4-methyl-7-octene-1-sulfonic acid (PFESA1), perfluorohexanesulfonic acid (PFHxS), perfluorohexanoic acid (PFHxA), perfluoro-n-octanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), or 0.4% dimethyl sulfoxide (DMSO) daily from 0-5 d post fertilization (dpf). At 6 dpf, developmental toxicity and developmental neurotoxicity assays were performed, and targeted analytical chemistry was used to measure media and tissue doses. To test whether aliphatic sulfonic acid PFAS cause the same toxicity phenotypes, perfluorobutanesulfonic acid (PFBS; 4-carbon), perfluoropentanesulfonic acid (PFPeS; 5-carbon), PFHxS (6-carbon), perfluoroheptanesulfonic acid (PFHpS; 7-carbon), and PFOS (8-carbon) were evaluated. RESULTS: PFHxS or PFOS exposure caused failed swim bladder inflation, abnormal ventroflexion of the tail, and hyperactivity at nonteratogenic concentrations. Exposure to PFHxA resulted in a unique hyperactivity signature. ADONA, PFESA1, or PFOA exposure resulted in detectable levels of parent compound in larval tissue but yielded negative toxicity results. GenX was unstable in DMSO, but stable and negative for toxicity when diluted in deionized water. Exposure to PFPeS, PFHxS, PFHpS, or PFOS resulted in a shared toxicity phenotype characterized by body axis and swim bladder defects and hyperactivity. CONCLUSIONS: All emerging fluoroether PFAS tested were negative for evaluated outcomes. Two unique toxicity signatures were identified arising from structurally dissimilar PFAS. Among sulfonic acid aliphatic PFAS, chemical potencies were correlated with increasing carbon chain length for developmental neurotoxicity, but not developmental toxicity. This study identified relationships between chemical structures and in vivo phenotypes that may arise from shared mechanisms of PFAS toxicity. These data suggest that developmental neurotoxicity is an important end point to consider for this class of widely occurring environmental chemicals. https://doi.org/10.1289/EHP5843.


Subject(s)
Fluorocarbons/toxicity , Neurotoxins/toxicity , Propionates/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish , Animals , Dose-Response Relationship, Drug , Tissue Distribution , Zebrafish/growth & development
4.
ALTEX ; 36(2): 261-276, 2019.
Article in English | MEDLINE | ID: mdl-30570668

ABSTRACT

Instilling confidence in use of in vitro assays for predictive toxicology requires evaluation of assay performance. Performance is typically assessed using reference chemicals--compounds with defined activity against the test system target. However, developing reference chemical lists has historically been very resource-intensive. We developed a semi-automated process for selecting and annotating reference chemicals across many targets in a standardized format and demonstrate the workflow here. A series of required fields defines the potential reference chemical: the in vitro molecular target, pathway, or phenotype affected; and the chemical's mode (e.g. agonist, antagonist, inhibitor). Activity information was computationally extracted into a database from multiple public sources including non-curated scientific literature and curated chemical-biological databases, resulting in the identification of chemical activity in 2995 biological targets. Sample data from literature sources covering 54 molecular targets ranging from data-poor to data-rich was manually checked for accuracy. Precision rates were 82.7% from curated data sources and 39.5% from automated literature extraction. We applied the final reference chemical lists to evaluating performance of EPA's ToxCast program in vitro bioassays. The level of support, i.e. the number of independent reports in the database linking a chemical to a target, was found to strongly correlate with likelihood of positive results in the ToxCast assays, although individual assay performance had considerable variation. This overall approach allows rapid development of candidate reference chemical lists for a wide variety of targets that can facilitate performance evaluation of in vitro assays as a critical step in imparting confidence in alternative approaches.


Subject(s)
Hazardous Substances/toxicity , High-Throughput Screening Assays/methods , In Vitro Techniques/standards , Workflow , Biological Assay , Databases, Factual , Hazardous Substances/metabolism , Humans , In Vitro Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...