Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Pflugers Arch ; 467(9): 1997-2009, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25369777

ABSTRACT

Mutant forms of connexin40 (Cx40) exist in the human population and predispose carriers to atrial fibrillation. Since endothelial expression of Cx40 is important for electrical and chemical communication within the arterial wall, carriers of mutant Cx40 proteins may be predisposed to peripheral arterial dysfunction and dysregulation of blood pressure. We have therefore studied mice expressing either a chemically dysfunctional mutant, Cx40T202S, or wild-type Cx40, with native Cx40, specifically in the endothelium. Blood pressure was measured by telemetry under normal conditions and during cardiovascular stress induced by locomotor activity, phenylephrine or nitric oxide blockade (N(É·)-nitro-L-arginine methyl ester hydroxide, L-NAME). Blood pressure of Cx40T202STg mice was significantly elevated at night when compared with wild-type or Cx40Tg mice, without change in mean heart rate, pulse pressure or locomotor activity. Analysis over 24 h showed that blood pressure of Cx40T202STg mice was significantly elevated at rest and additionally during locomotor activity. In contrast, neither plasma renin concentration nor pressor responses to phenylephrine or L-NAME were altered, the latter indicating that nitric oxide bioavailability was normal. In isolated, pressurised mesenteric arteries, hyperpolarisation and vasodilation evoked by SKA-31, the selective modulator of SKCa and IKCa channels, was significantly reduced in Cx40T202STg mice, due to attenuation of the SKCa component. Acetylcholine-induced ascending vasodilation in vivo was also significantly attenuated in cremaster muscle arterioles of Cx40T202STg mice, compared to wild-type and Cx40Tg mice. We conclude that endothelial expression of the chemically dysfunctional Cx40T202S reduces peripheral vasodilator capacity mediated by SKCa-dependent hyperpolarisation and also increases blood pressure.


Subject(s)
Connexins/metabolism , Endothelium, Vascular/physiopathology , Hypertension/physiopathology , Potassium Channels, Calcium-Activated/metabolism , Vasodilation/physiology , Animals , Blood Pressure , Connexins/genetics , Male , Membrane Potentials , Mice , Mice, Inbred C57BL , Mice, Transgenic , Patch-Clamp Techniques , Gap Junction alpha-5 Protein
2.
Hypertension ; 65(3): 662-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25547341

ABSTRACT

During activity, coordinated vasodilation of microcirculatory networks with upstream supply vessels increases blood flow to skeletal and cardiac muscles and reduces peripheral resistance. Endothelial dysfunction in humans attenuates activity-dependent vasodilation, resulting in exercise-induced hypertension in otherwise normotensive individuals. Underpinning activity-dependent hyperemia is an ascending vasodilation in which the endothelial gap junction protein, connexin (Cx)40, plays an essential role. Because exercise-induced hypertension is proposed as a forerunner to clinical hypertension, we hypothesized that endothelial disruption of Cx40 function in mice may create an animal model of this condition. To this end, we created mice in which a mutant Cx40T152A was expressed alongside wildtype Cx40 selectively in the endothelium. Expression of the Cx40T152A transgene in Xenopus oocytes and mouse coronary endothelial cells in vitro impaired both electric and chemical conductance and acted as a dominant-negative against wildtype Cx40, Cx43, and Cx45, but not Cx37. Endothelial expression of Cx40T152A in Cx40T152ATg mice attenuated ascending vasodilation, without effect on radial coupling through myoendothelial gap junctions. Using radiotelemetry, Cx40T152ATg mice showed an activity-dependent increase in blood pressure, which was significantly greater than in wildtype mice, but significantly less than in chronically hypertensive, Cx40knockout mice. The increase in heart rate with activity was also greater than in wildtype or Cx40knockout mice. We conclude that the endothelial Cx40T152A mutation attenuates activity-dependent vasodilation, producing a model of exercise-induced hypertension. These data highlight the importance of endothelial coupling through Cx40 in regulating blood pressure during activity.


Subject(s)
Connexins/deficiency , Endothelium, Vascular/metabolism , Hypertension/etiology , Hypertension/physiopathology , Physical Conditioning, Animal/adverse effects , Animals , Blood Pressure/physiology , Connexins/genetics , Connexins/metabolism , Disease Models, Animal , Endothelium, Vascular/pathology , Gap Junctions/physiology , Heart Rate/physiology , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mutation/genetics , Vasodilation/physiology , Gap Junction alpha-5 Protein
3.
Pflugers Arch ; 467(4): 727-35, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24923576

ABSTRACT

Cardiovascular disease is characterised by reduced nitric oxide bioavailability resulting from oxidative stress. Our previous studies have shown that nitric oxide deficit per se increases the contribution of T-type calcium channels to vascular tone through increased superoxide from NADPH oxidase (Nox). The aim of the present study was therefore to identify the Nox isoform responsible for modulating T-type channel function, as T-type channels are implicated in several pathophysiological conditions involving oxidative stress. We evaluated T-channel function in skeletal muscle arterioles in vivo, using a novel T-channel blocker, TTA-A2 (3 µmol/L), which demonstrated no cross reactivity with L-type channels. Wild-type and Nox2 knockout (Nox2ko) mice were treated with the nitric oxide synthase inhibitor L-NAME (40 mg/kg/day) for 2 weeks. L-NAME treatment significantly increased systolic blood pressure and the contribution of T-type calcium channels to arteriolar tone in wild-type mice, and this was not prevented by Nox2 deletion. In Nox2ko mice, pharmacological inhibition of Nox1 (10 µmol/L ML171), Nox4 (10 µmol/L VAS2870) and Nox4-derived hydrogen peroxide (500 U/mL catalase) significantly reduced the effect of chronic nitric oxide inhibition on T-type channel function. In contrast, in wild-type mice, ML171 and VAS2870, but not catalase, reduced the contribution of T-type channels to vascular tone, suggesting a role for Nox1 and non-selective actions of VAS2870. We conclude that Nox1, but not Nox2 or Nox4, is responsible for the upregulation of T-type calcium channels elicited by chronic nitric oxide deficit. These data point to an important role for this isoform in increasing T-type channel function during oxidative stress.


Subject(s)
Arterioles/metabolism , Calcium Channels, T-Type/metabolism , NADH, NADPH Oxidoreductases/metabolism , Nitric Oxide/deficiency , Animals , Arterioles/drug effects , Arterioles/physiology , Calcium Channel Blockers/pharmacology , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Muscle, Skeletal/blood supply , NADH, NADPH Oxidoreductases/antagonists & inhibitors , NADH, NADPH Oxidoreductases/genetics , NADPH Oxidase 1 , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/antagonists & inhibitors , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Nitric Oxide/metabolism , Up-Regulation , Vasoconstriction
4.
Vascul Pharmacol ; 61(1): 10-5, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24576493

ABSTRACT

This study examined the effect of diet-induced obesity on the functional role of large-conductance Ca²âº-activated K⁺ channels (BK(Ca)) in rat middle cerebral arteries. Male Sprague-Dawley rats were fed a control (chow) or high-fat diet for 16-20 weeks. Diet-induced obesity decreased maximum bradykinin-induced dilation of isolated, pressurized (80 mmHg) arteries, but vasodilation induced by sodium nitroprusside (SNP) was unaltered. Responses to bradykinin and SNP in arteries from both control and obese rats were abolished by combination of the nitric oxide synthase (NOS) and guanylate cyclase (sGC) inhibitors L-NAME (100 µmol/L) and ODQ (10 µmol/L) respectively, or by the BK(Ca) blocker iberiotoxin (IBTX, 0.1 µmol/L). Vasodilation induced by the PAR2 agonist SLIGRL in arteries from control-diet rats was abolished by L-NAME/ODQ, but unaffected by IBTX. Obesity greatly reduced the inhibitory effect of L-NAME/ODQ on SLIGRL-induced dilation, whereas IBTX alone now inhibited responses to SLIGRL. Neither obesity nor IBTX altered the responsiveness of the arteries to vasoconstrictors 5-hydroxytryptamine (5-HT) or angiotensin II (Ang II). Obesity had variable effects on the functional role of BK(Ca) in the middle-cerebral artery depending upon the agent used to stimulate the channel, reflecting the variety of mechanisms by which BK(Ca) may be activated.


Subject(s)
Middle Cerebral Artery/physiology , Obesity/physiopathology , Potassium Channels, Calcium-Activated/physiology , Adiposity , Angiotensin II/pharmacology , Animals , Blood Glucose/analysis , Diet, High-Fat , Endothelium, Vascular/physiology , Male , Nitroprusside/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, PAR-2/physiology , Serotonin/pharmacology , Vasoconstriction , Vasodilation
5.
Pflugers Arch ; 466(4): 767-79, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24482062

ABSTRACT

Low-voltage-activated T-type calcium channels play an important role in regulating cellular excitability and are implicated in conditions, such as epilepsy and neuropathic pain. T-type channels, especially Cav3.1 and Cav3.2, are also expressed in the vasculature, although patch clamp studies of isolated vascular smooth muscle cells have in general failed to demonstrate these low-voltage-activated calcium currents. By contrast, the channels which are blocked by T-type channel antagonists are high-voltage activated but distinguishable from their L-type counterparts by their T-type biophysical properties and small negative shifts in activation and inactivation voltages. These changes in T-channel properties may result from vascular-specific expression of splice variants of Cav3 genes, particularly in exon 25/26 of the III-IV linker region. Recent physiological studies suggest that T-type channels make a small contribution to vascular tone at low intraluminal pressures, although the relevance of this contribution is unclear. By contrast, these channels play a larger role in vascular tone of small arterioles, which would be expected to function at lower intra-vascular pressures. Upregulation of T-type channel function following decrease in nitric oxide bioavailability and increase in oxidative stress, which occurs during cardiovascular disease, suggests that a more important role could be played by these channels in pathophysiological situations. The ability of T-type channels to be rapidly recruited to the plasma membrane, coupled with their subtype-specific localisation in signalling microdomains where they could modulate the function of calcium-dependent ion channels and pathways, provides a mechanism for rapid up- and downregulation of vasoconstriction. Future investigation into the molecules which govern these changes may illuminate novel targets for the treatment of conditions such as therapy-resistant hypertension and vasospasm.


Subject(s)
Calcium Channels, T-Type/physiology , Muscle, Smooth, Vascular/physiology , Vasoconstriction/physiology , Vasodilation/physiology , Amino Acid Sequence , Animals , Humans , Membrane Potentials/physiology , Molecular Sequence Data , Protein Isoforms/physiology
6.
J Physiol ; 591(8): 2157-73, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23440962

ABSTRACT

Regulation of blood flow in microcirculatory networks depends on spread of local vasodilatation to encompass upstream arteries; a process mediated by endothelial conduction of hyperpolarization. Given that endothelial coupling is reduced in hypertension, we used hypertensive Cx40ko mice, in which endothelial coupling is attenuated, to investigate the contribution of the renin-angiotensin system and reduced endothelial cell coupling to conducted vasodilatation of cremaster arterioles in vivo. When the endothelium was disrupted by light dye treatment, conducted vasodilatation, following ionophoresis of acetylcholine, was abolished beyond the site of endothelial damage. In the absence of Cx40, sparse immunohistochemical staining was found for Cx37 in the endothelium, and endothelial, myoendothelial and smooth muscle gap junctions were identified by electron microscopy. Hyperpolarization decayed more rapidly in arterioles from Cx40ko than wild-type mice. This was accompanied by a shift in the threshold potential defining the linear relationship between voltage and diameter, increased T-type calcium channel expression and increased contribution of T-type (3 µmol l(-1) NNC 55-0396), relative to L-type (1 µmol l(-1) nifedipine), channels to vascular tone. The change in electromechanical coupling was reversed by inhibition of the renin-angiotensin system (candesartan, 1.0 mg kg(-1) day(-1) for 2 weeks) or by acute treatment with the superoxide scavenger tempol (1 mmol l(-1)). Candesartan and tempol treatments also significantly improved conducted vasodilatation. We conclude that conducted vasodilatation in Cx40ko mice requires the endothelium, and attenuation results from both a reduction in endothelial coupling and an angiotensin II-induced increase in oxidative stress. We suggest that during cardiovascular disease, the ability of microvascular networks to maintain tissue integrity may be compromised due to oxidative stress-induced changes in electromechanical coupling.


Subject(s)
Endothelium, Vascular/physiopathology , Hypertension/physiopathology , Oxidative Stress , Angiotensin II/physiology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Arterioles/physiology , Benzimidazoles/pharmacology , Biphenyl Compounds , Calcium Channels, L-Type/physiology , Calcium Channels, T-Type/physiology , Connexins/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microcirculation , Models, Cardiovascular , Renin/blood , Tetrazoles/pharmacology , Vasodilation , Gap Junction alpha-5 Protein
7.
Cardiovasc Res ; 98(3): 449-57, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23436820

ABSTRACT

AIMS: As cardiovascular disease is characterized by reduced nitric oxide bioavailability, our aim was to determine the impact of this change on the mechanism underlying vascular tone of pressurized arteries in vitro and in vivo. METHODS AND RESULTS: We used pressurized cerebral and mesenteric arteries in vitro and skeletal muscle arterioles in vivo to study the contribution of L-type (1 µmol/L nifedipine) and T-type (1 µmol/L mibefradil, 3 µmol/L NNC 55-0396) calcium channels to vascular tone, following acute or chronic inhibition of nitric oxide. Acute inhibition with l-NAME (10 µmol/L) significantly increased the T-type, but not the L-type, channel contribution to vascular tone in vitro and in vivo, and altered the smooth muscle expression of the Cav3.1 and Cav3.2 T-type channels. In pressurized mesenteric arteries of Cav3.1ko and Cav3.2ko mice, acutely treated with l-NAME, the contribution of T-type channels relative to L-type channels was significantly reduced, compared with arteries from wild-type mice.Chronic l-NAME treatment (40 mg/kg/day; 14-18 days) increased blood pressure, vascular superoxide, and the contribution of T-type channels to vascular tone in vivo. The latter was reversed by acute scavenging of superoxide with tempol (1 mmol/L), or inhibition of NADPH oxidase with apocynin (500 µmol/L) or DPI (5 µmol/L). CONCLUSION: We conclude that nitric oxide deficit produces a significant increase in the contribution of Cav3.1 and Cav3.2 T-type calcium channels to vascular tone, by regulating the bioavailability of reactive oxygen species produced by NADPH oxidase. Our data provide evidence for a novel causal link between nitric oxide deficit, oxidative stress, and T-type calcium channel function.


Subject(s)
Calcium Channels, T-Type/metabolism , Muscle, Smooth, Vascular/metabolism , Nitric Oxide/metabolism , Oxidative Stress , Vasoconstriction , Animals , Arterioles/metabolism , Blood Pressure , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/metabolism , Calcium Channels, T-Type/deficiency , Calcium Channels, T-Type/drug effects , Calcium Channels, T-Type/genetics , Cerebral Arteries/metabolism , Enzyme Inhibitors/pharmacology , Female , Free Radical Scavengers/pharmacology , Male , Mesenteric Arteries/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/drug effects , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Oxidative Stress/drug effects , Rats , Rats, Wistar , Superoxides/metabolism , Time Factors , Vasoconstriction/drug effects
8.
Am J Physiol Heart Circ Physiol ; 302(12): H2464-76, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22492718

ABSTRACT

Obesity is a risk factor for hypertension and other vascular disease. The aim of this study was to examine the effect of diet-induced obesity on endothelium-dependent dilation of rat cremaster muscle arterioles. Male Sprague-Dawley rats (213 ± 1 g) were fed a cafeteria-style high-fat or control diet for 16-20 wk. Control rats weighed 558 ± 7 g compared with obese rats 762 ± 12 g (n = 52-56; P < 0.05). Diet-induced obesity had no effect on acetylcholine (ACh)-induced dilation of isolated, pressurized (70 mmHg) arterioles, but sodium nitroprusside (SNP)-induced vasodilation was enhanced. ACh-induced dilation of arterioles from control rats was abolished by a combination of the K(Ca) blockers apamin, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), and iberiotoxin (IBTX; all 0.1 µmol/l), with no apparent role for nitric oxide (NO). In arterioles from obese rats, however, IBTX had no effect on responses to ACh while the NO synthase (NOS)/guanylate cyclase inhibitors N(ω)-nitro-L-arginine methyl ester (L-NAME; 100 µmol/l)/1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 µmol/l) partially inhibited ACh-induced dilation. Furthermore, NOS activity (but not endothelial NOS expression) was increased in arteries from obese rats. L-NAME/ODQ alone or removal of the endothelium constricted arterioles from obese but not control rats. Expression of caveolin-1 and -2 oligomers (but not monomers or caveolin-3) was increased in arterioles from obese rats. The number of caveolae was reduced in the endothelium of arteries, and caveolae density was increased at the ends of smooth muscle cells from obese rats. Diet-induced obesity abolished the contribution of large-conductance Ca(2+)-activated K(+) channel to ACh-mediated endothelium-dependent dilation of rat cremaster muscle arterioles, while increasing NOS activity and inducing an NO-dependent component.


Subject(s)
Arterioles/metabolism , Caveolae/metabolism , Endothelium, Vascular/metabolism , Muscle, Smooth/blood supply , Nitric Oxide/metabolism , Obesity/metabolism , Potassium Channels/metabolism , Acetylcholine/pharmacology , Animals , Apamin/pharmacology , Arterioles/drug effects , Arterioles/physiopathology , Caveolae/drug effects , Caveolin 1/metabolism , Caveolin 2/metabolism , Diet, High-Fat , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Male , Muscle, Smooth/metabolism , Muscle, Smooth/physiopathology , Nitroprusside/pharmacology , Obesity/physiopathology , Peptides/pharmacology , Pyrazoles/pharmacology , Rats , Rats, Sprague-Dawley , Vasodilation/drug effects , Vasodilation/physiology , Vasodilator Agents/pharmacology
9.
Am J Physiol Heart Circ Physiol ; 301(1): H29-40, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21536854

ABSTRACT

Mechanisms underlying obesity-related vascular dysfunction are unclear. This study examined the effect of diet-induced obesity on expression and function of large conductance Ca(2+)-activated potassium channel (BK(Ca)) in rat pressurized small resistance vessels with myogenic tone. Male Sprague-Dawley rats fed a cafeteria-style high fat diet (HFD; ∼30% energy from fat) for 16-20 wk were ∼30% heavier than controls fed standard chow (∼13% fat). Obesity did not alter BK(Ca) α-subunit function or α-subunit protein or mRNA expression in vessels isolated from the cremaster muscle or middle-cerebral circulations. In contrast, BK(Ca) ß(1)-subunit protein expression and function were significantly reduced in cremaster muscle arterioles but increased in middle-cerebral arteries from obese animals. Immunohistochemistry showed α- and ß(1)-subunits were present exclusively in the smooth muscle of both vessels. Cremaster muscle arterioles from obese animals showed significantly increased medial thickness, and media-to-lumen ratio and pressurized arterioles showed increased myogenic tone at 30 mmHg, but not at 50-120 mmHg. Myogenic tone was not affected by obesity in middle-cerebral arteries. The BK(Ca) antagonist iberiotoxin constricted both cremaster muscle and middle-cerebral arterioles from control rats; this effect of iberiotoxin was abolished in cremaster muscle arteries only from obese rats. Diet-induced obesity has contrasting effects on BK(Ca) function in different vascular beds, through differential effects on ß(1)-subunit expression. However, these alterations in BK(Ca) function had little effect on overall myogenic tone, suggesting that the mechanisms controlling myogenic tone can be altered and compensate for altered BK(Ca) expression and function.


Subject(s)
Arterioles/metabolism , Cerebral Arteries/metabolism , Diet , Muscle, Skeletal/metabolism , Obesity/metabolism , Potassium Channels/biosynthesis , Animals , Blotting, Western , Dietary Fats/pharmacology , Energy Intake/physiology , Heart Rate/physiology , Hyperinsulinism/etiology , Hyperinsulinism/physiopathology , Hypertension/etiology , Hypertension/physiopathology , Immunohistochemistry , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Leptin/blood , Male , Microscopy, Electron , Muscle Tonus/physiology , Muscle, Skeletal/blood supply , Potassium Channels/agonists , Rats , Rats, Sprague-Dawley , Regional Blood Flow/physiology , Reverse Transcriptase Polymerase Chain Reaction , Weight Gain/physiology
10.
PLoS One ; 6(1): e16423, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21283658

ABSTRACT

BACKGROUND: The vascular endothelium plays a critical role in the control of blood flow. Altered endothelium-mediated vasodilator and vasoconstrictor mechanisms underlie key aspects of cardiovascular disease, including those in obesity. Whilst the mechanism of nitric oxide (NO)-mediated vasodilation has been extensively studied in obesity, little is known about the impact of obesity on vasodilation to the endothelium-derived hyperpolarization (EDH) mechanism; which predominates in smaller resistance vessels and is characterized in this study. METHODOLOGY/PRINCIPAL FINDINGS: Membrane potential, vessel diameter and luminal pressure were recorded in 4(th) order mesenteric arteries with pressure-induced myogenic tone, in control and diet-induced obese rats. Obesity, reflecting that of human dietary etiology, was induced with a cafeteria-style diet (∼30 kJ, fat) over 16-20 weeks. Age and sexed matched controls received standard chow (∼12 kJ, fat). Channel protein distribution, expression and vessel morphology were determined using immunohistochemistry, Western blotting and ultrastructural techniques. In control and obese rat vessels, acetylcholine-mediated EDH was abolished by small and intermediate conductance calcium-activated potassium channel (SK(Ca)/IK(Ca)) inhibition; with such activity being impaired in obesity. SK(Ca)-IK(Ca) activation with cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA) and 1-ethyl-2-benzimidazolinone (1-EBIO), respectively, hyperpolarized and relaxed vessels from control and obese rats. IK(Ca)-mediated EDH contribution was increased in obesity, and associated with altered IK(Ca) distribution and elevated expression. In contrast, the SK(Ca)-dependent-EDH component was reduced in obesity. Inward-rectifying potassium channel (K(ir)) and Na(+)/K(+)-ATPase inhibition by barium/ouabain, respectively, attenuated and abolished EDH in arteries from control and obese rats, respectively; reflecting differential K(ir) expression and distribution. Although changes in medial properties occurred, obesity had no effect on myoendothelial gap junction density. CONCLUSION/SIGNIFICANCE: In obese rats, vasodilation to EDH is impaired due to changes in the underlying potassium channel signaling mechanisms. Whilst myoendothelial gap junction density is unchanged in arteries of obese compared to control, increased IK(Ca) and Na(+)/K(+)-ATPase, and decreased K(ir) underlie changes in the EDH mechanism.


Subject(s)
Diet/adverse effects , Endothelium, Vascular/pathology , Membrane Potentials , Obesity/physiopathology , Potassium Channels/analysis , Signal Transduction/physiology , Animals , Gap Junctions , Obesity/etiology , Rats , Tissue Distribution , Vasodilation
11.
J Pharmacol Exp Ther ; 336(3): 701-8, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21172909

ABSTRACT

Myoendothelial microdomain signaling via localized calcium-activated potassium channel (K(Ca)) and gap junction connexins (Cx) is critical for endothelium-dependent vasodilation in rat mesenteric artery. The present study determines the relative contribution of NO and gap junction-K(Ca) mediated microdomain signaling to endothelium-dependent vasodilation in human mesenteric artery. The hypothesis tested was that such activity is due to NO and localized K(Ca) and Cx activity. In mesenteric arteries from intestinal surgery patients, endothelium-dependent vasodilation was characterized using pressure myography with pharmacological intervention. Vessel morphology was examined using immunohistochemical and ultrastructural techniques. In vessel segments at 80 mm Hg, the intermediate (I)K(Ca) blocker 1-[(2-chlorophenyl)diphenyl-methyl]-1H-pyrazole (TRAM-34; 1 µM) inhibited bradykinin (0.1 nM-3 µM)-induced vasodilation, whereas the small (S) K(Ca) blocker apamin (50 and 100 nM) had no effect. Direct IK(Ca) activation with 1-ethyl-2-benzimidazolinone (1-EBIO; 10-300 µM) induced vasodilation, whereas cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (1-30 µM), the SK(Ca) activator, failed to dilate arteries, whereas dilation induced by 1-EBIO (10-100 µM) was blocked by TRAM-34. Bradykinin-mediated vasodilation was attenuated by putative gap junction block with carbenoxolone (100 µM), with remaining dilation blocked by N-nitro l-arginine methyl ester (100 µM) and [1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one] (10 µM), NO synthase and soluble guanylate cyclase blockers, respectively. In human mesenteric artery, myoendothelial gap junction and IK(Ca) activity are consistent with Cx37 and IK(Ca) microdomain expression and distribution. Data suggest that endothelium-dependent vasodilation is primarily mediated by NO, IK(Ca), and gap junction Cx37 in this vessel. Myoendothelial microdomain signaling sites are present in human mesenteric artery and are likely to contribute to endothelium-dependent vasodilation via a mechanism that is conserved between species.


Subject(s)
Endothelium-Dependent Relaxing Factors/physiology , Gap Junctions/physiology , Intermediate-Conductance Calcium-Activated Potassium Channels/physiology , Mesenteric Arteries/physiology , Nitric Oxide/physiology , Connexins/physiology , Female , Humans , Male , Middle Aged , Vasodilation/physiology , Gap Junction alpha-4 Protein
12.
J Pharmacol Exp Ther ; 335(2): 284-93, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20671071

ABSTRACT

The mechanisms involved in altered endothelial function in obesity-related cardiovascular disease are poorly understood. This study investigates the effect of chronic obesity on endothelium-dependent vasodilation and the relative contribution of nitric oxide (NO), calcium-activated potassium channels (K(Ca)), and myoendothelial gap junctions (MEGJs) in the rat saphenous artery. Obesity was induced by feeding rats a cafeteria-style diet (∼30 kJ as fat) for 16 to 20 weeks, with this model reflecting human dietary obesity etiology. Age- and sex-matched controls received standard chow (∼12 kJ as fat). Endothelium-dependent vasodilation was characterized in saphenous arteries by using pressure myography with pharmacological intervention, Western blotting, immunohistochemistry, and ultrastructural techniques. In saphenous artery from control, acetylcholine (ACh)-mediated endothelium-dependent vasodilation was blocked by NO synthase and soluble guanylate cyclase inhibition, whereas in obese rats, the ACh response was less sensitive to such inhibition. Conversely, the intermediate conductance K(Ca) (IK(Ca)) blocker 1-[(2-chlorophenyl)diphenyl-methyl]-1H pyrazole attenuates ACh-mediated dilation in obese, but not control, vessels. In a similar manner, putative gap junction block with carbenoxolone increased the pEC(50) for ACh in arteries from obese, but not control, rats. IK1 protein and MEGJ expression was up-regulated in the arteries of obese rats, an observation absent in control. Addition of the small conductance K(Ca) blocker apamin had no effect on ACh-mediated dilation in either control or obese rat vessels, consistent with unaltered SK3 expression. Up-regulation of distinct IK(Ca)- and gap junction-mediated pathways at myoendothelial microdomain sites, key mechanisms for endothelial-derived hyperpolarization-type activity, maintains endothelium-dependent vasodilation in diet-induced obese rat saphenous artery. Plasticity of myoendothelial coupling mechanisms represents a significant potential target for therapeutic intervention.


Subject(s)
Endothelium, Vascular/physiology , Gap Junctions/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/biosynthesis , Muscle, Smooth, Vascular/metabolism , Obesity/physiopathology , Vasodilation/physiology , Animals , Blotting, Western , Disease Models, Animal , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/ultrastructure , Gap Junctions/physiology , Gap Junctions/ultrastructure , Immunohistochemistry , Intermediate-Conductance Calcium-Activated Potassium Channels/agonists , Male , Microscopy, Electron , Muscle, Smooth, Vascular/physiology , Muscle, Smooth, Vascular/ultrastructure , Myography , Obesity/metabolism , Rats , Rats, Sprague-Dawley , Up-Regulation , Vasoconstrictor Agents/pharmacology , Vasodilation/drug effects
13.
J Appl Physiol (1985) ; 106(3): 887-92, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19112159

ABSTRACT

Lateral pharyngeal fat pad compression of the upper airway (UA) wall is thought to influence UA size in patients with obstructive sleep apnea. We examined interactions between acute mass/volume loading of the UA extra-luminal tissue space and UA patency. We studied 12 supine, anesthetized, spontaneously breathing, head position-controlled (50 degrees ), New Zealand White rabbits. Submucosal extraluminal tissue pressures (ETP) in the anterolateral (ETPlat) and anterior (ETPant) pharyngeal wall were monitored with surgically inserted pressure transducer-tipped catheters (Millar). Tracheal pressure (Ptr) and airflow (V) were measured via a pneumotachograph and pressure transducer inserted in series into the intact trachea, with hypopharyngeal cross-sectional area (CSA) measured via computed tomography, while graded saline inflation (0-1.5ml) of a compliant tissue expander balloon in the anterolateral subcutaneous tissue was performed. Inspiratory UA resistance (Rua) at 20 ml/s was calculated from a power function fitted to Ptr vs. V data. Graded expansion of the anterolateral balloon increased ETPlat from 2.3 +/- 0.5 cmH(2)O (n = 11, mean +/- SEM) to 5.0 +/- 1.1 cmH(2)O at 1.5-ml inflation (P < 0.05; ANOVA). However, ETPant was unchanged from 0.5 +/- 0.5 cmH(2)O (n = 9; P = 0.17). Concurrently, Rua increased to 119 +/- 4.2% of baseline value (n = 12; P < 0.001) associated with a significant reduction in CSA between 10 and 70% of airway length to a minimum of 82.2 +/- 4.4% of baseline CSA at 40% of airway length (P < 0.05). We conclude that anterolateral loading of the upper airway extraluminal tissue space decreases upper airway patency via an increase in ETPlat, but not ETPant. Lateral pharyngeal fat pad size may influence UA patency via increased tissue volume and pressure causing UA wall compression.


Subject(s)
Airway Obstruction/physiopathology , Airway Resistance/physiology , Pharynx/physiology , Pharynx/physiopathology , Respiratory Mechanics/physiology , Animals , Elasticity/physiology , Lung Compliance , Male , Pressure , Rabbits , Tidal Volume
14.
J Appl Physiol (1985) ; 103(5): 1622-7, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17702839

ABSTRACT

Snoring-associated vibration energy transmission from the upper airway to the carotid artery has been hypothesized as a potential atherosclerotic plaque initiating/rupturing event that may provide a pathogenic mechanism linking snoring and embolic stroke. We examined transmission of oscillatory pressure waves from the pharyngeal lumen to the common carotid artery wall and lumen in seven male, anesthetized, spontaneously breathing New Zealand White rabbits. Airflow was monitored via a pneumotachograph inserted in series in the intact trachea. Fifteen 20-s runs of, separately, 40-, 60-, and 90-Hz oscillatory pressure waves [pressure amplitude in the trachea (Ptr(amp)), amplitude 2-20 cmH(2)O] were generated by a loudspeaker driven by a sine wave generator and amplifier and superimposed on tidal breathing via the cranial tracheal connector. Pressure transducer-tipped catheters measured pressure amplitudes in the tissues adjacent to the common carotid artery bifurcation (Pcti(amp)) and within the lumen (carotid sinus; Pcs(amp)). Data were analyzed using power spectrum analysis and linear mixed-effects statistical modeling. Both the frequency (f) and amplitude of the injected pressure wave influenced Pcti(amp) and Pcs(amp), in that ln Pcti(amp) = 1.2(Ptr(amp)) + 0.02(f) - 5.2, and ln Pcs(amp) = 0.6(Ptr(amp)) + 0.02(f) - 4.9 (both P < 0.05). Across all frequencies tested, transfer of oscillatory pressure across the carotid artery wall was associated with an amplitude gain, as expressed by a Pcs(amp)-to-Pcti(amp) ratio of 1.8 +/- 0.3 (n = 6). Our findings confirm transmission of oscillatory pressure waves from the upper airway lumen to the peripharyngeal tissues and across the carotid artery wall to the lumen. Further studies are required to establish the role of this incident energy in the pathogenesis of carotid artery vascular disease.


Subject(s)
Carotid Artery Diseases/etiology , Carotid Artery, Common/physiopathology , Pharynx/physiopathology , Snoring/physiopathology , Trachea/physiopathology , Animals , Carotid Artery Diseases/physiopathology , Male , Models, Biological , Models, Statistical , Oscillometry , Pressure , Rabbits , Snoring/complications , Transducers, Pressure , Vibration
15.
J Appl Physiol (1985) ; 100(5): 1547-53, 2006 May.
Article in English | MEDLINE | ID: mdl-16455812

ABSTRACT

Epidemiological studies link habitual snoring and stroke, but mechanisms involved are poorly understood. One previously advanced hypothesis is that transmitted snoring vibration energy may promote carotid atheromatous plaque formation or rupture. To test whether vibration energy is present in carotid artery walls during snoring we developed an animal model in which we examined induced snoring (IS)-associated tissue energy levels. In six male, supine, anesthetized, spontaneously breathing New Zealand White rabbits, we surgically inserted pressure transducer-tipped catheters (Millar) to monitor tissue pressure at the carotid artery bifurcation (PCT) and within the carotid sinus lumen (PCS; artery ligated). Snoring was induced via external compression (sandbag) over the pharyngeal region. Data were analyzed using power spectral analysis for frequency bands above and below 50 Hz. For frequencies below 50 Hz, PCT energy was 2.2 (1.1-12.3) cmH2O2 [median (interquartile range)] during tidal breathing (TB) increasing to 39.0 (2.5-95.0) cmH2O2 during IS (P = 0.05, Wilcoxon's signed-rank test). For frequencies > 50 Hz, PCT energy increased from 9.2 (8.3-10.4) x 10(-4) cmH2O2 during TB to 172.0 (118.0-569.0) x 10(-4) cmH2O2 during IS (P = 0.03). Concurrently, PCS energy was 13.4 (8.5-18.0) x 10(-4) cmH2O2 during TB and 151.0 (78.2-278.8) x 10(-4) cmH2O2 during IS (P < 0.03). The PCS energy was greater than PCT energy for the 100-275 Hz bandwidth. In conclusion, during IS there is increased energy around and within the carotid artery, including lower frequency amplification for PCS. These findings may have implications for carotid atherogenesis and/or plaque rupture.


Subject(s)
Atherosclerosis/physiopathology , Carotid Arteries/physiology , Energy Transfer/physiology , Snoring/physiopathology , Animals , Carotid Stenosis/physiopathology , Disease Models, Animal , Male , Rabbits , Time Factors , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL