Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PeerJ ; 10: e12963, 2022.
Article in English | MEDLINE | ID: mdl-35702253

ABSTRACT

Many crop plants rely on insect pollination, particularly insect-pollinated crops which are functionally dioecious. These crops require insects to move pollen between separate plants which are functionally male or female. While honey bees are typically considered the most important crop pollinator species, many other insects are known to visit crops but the pollination contribution of the full diversity of these flower visitors is poorly understood. In this study, we examine the role of diverse insect pollinators for two kiwifruit cultivars as model systems for dioecious crops: Actinidia chinensis var. deliciosa 'Hayward' (a green-fleshed variety) and A. chinensis var. chinensis 'Zesy002' (a gold-fleshed variety). In our round-the-clock insect surveys, we identified that psychodid flies and mosquitoes were the second and third most frequent floral visitors after honey bees (Apis mellifera L), but further work is required to investigate their pollination efficiency. Measures of single-visit pollen deposition identified that several insects, including the bees Leioproctus spp. and Bombus spp. and the flies Helophilus hochstetteri and Eristalis tenax, deposited a similar amount of pollen on flowers as honey bees (Apis mellifera). Due to their long foraging period and high pollen deposition, we recommend the development of strategies to boost populations of Bombus spp., Eristalis tenax and other hover flies, and unmanaged bees for use as synergistic pollinators alongside honey bees.


Subject(s)
Actinidia , Culicidae , Bees , Animals , Pollination , Insecta , Flowers , Crops, Agricultural
2.
Trends Plant Sci ; 27(8): 769-780, 2022 08.
Article in English | MEDLINE | ID: mdl-35501260

ABSTRACT

Nature-based management aims to improve sustainable agroecosystem production, but its efficacy has been variable. We argue that nature-based agroecosystem management could be significantly improved by explicitly considering and manipulating the underlying networks of species interactions. A network perspective can link species interactions to ecosystem functioning and stability, identify influential species and interactions, and suggest optimal management approaches. Recent advances in predicting the network roles of species from their functional traits could allow direct manipulation of network architecture through additions or removals of species with targeted traits. Combined with improved understanding of the structure and dynamics of networks across spatial and temporal scales and interaction types, including social-ecological, applying these tools to nature-based management can contribute to sustainable agroecosystems.


Subject(s)
Ecosystem
3.
J Appl Entomol ; 145(5): 369-383, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34937993

ABSTRACT

Insect pollination increases the yield and quality of many crops and therefore, understanding the role of insect pollinators in crop production is necessary to sustainably increase yields. Avocado Persea americana benefits from insect pollination, however, a better understanding of the role of pollinators and their contribution to the production of this globally important crop is needed. In this study, we carried out a systematic literature review and meta-analysis of studies investigating the pollination ecology of avocado to answer the following questions: (a) Are there any research gaps in terms of geographic location or scientific focus? (b) What is the effect of insect pollinators on avocado pollination and production? (c) Which pollinators are the most abundant and effective and how does this vary across location? (d) How can insect pollination be improved for higher yields? (e) What are the current evidence gaps and what should be the focus of future research? Research from many regions of the globe has been published, however, results showed that there is limited information from key avocado producing countries such as Mexico and the Dominican Republic. In most studies, insects were shown to contribute greatly to pollination, fruit set and yield. Honeybees Apis mellifera were important pollinators in many regions due to their efficiency and high abundance, however, many wild pollinators also visited avocado flowers and were the most frequent visitors in over 50% of studies. This study also highlighted the effectiveness of stingless bees (Meliponini) and blow flies (Calliphoridae) as avocado pollinators although, for the majority of flower visitors, there is a lack of data on pollinator efficiency. For optimal yields, growers should ensure a sufficient abundance of pollinators in their orchards either through increasing honeybee hive density or, for a more sustainable approach, by managing wild pollinators through practices that protect or promote natural habitat.

4.
Nat Ecol Evol ; 5(10): 1453-1461, 2021 10.
Article in English | MEDLINE | ID: mdl-34400826

ABSTRACT

Pollinator decline has attracted global attention and substantial efforts are underway to respond through national pollinator strategies and action plans. These policy responses require clarity on what is driving pollinator decline and what risks it generates for society in different parts of the world. Using a formal expert elicitation process, we evaluated the relative regional and global importance of eight drivers of pollinator decline and ten consequent risks to human well-being. Our results indicate that global policy responses should focus on reducing pressure from changes in land cover and configuration, land management and pesticides, as these were considered very important drivers in most regions. We quantify how the importance of drivers and risks from pollinator decline, differ among regions. For example, losing access to managed pollinators was considered a serious risk only for people in North America, whereas yield instability in pollinator-dependent crops was classed as a serious or high risk in four regions but only a moderate risk in Europe and North America. Overall, perceived risks were substantially higher in the Global South. Despite extensive research on pollinator decline, our analysis reveals considerable scientific uncertainty about what this means for human society.


Subject(s)
Pesticides , Pollination , Crops, Agricultural , Europe , Humans , North America
6.
PLoS One ; 15(10): e0231120, 2020.
Article in English | MEDLINE | ID: mdl-33095783

ABSTRACT

Mutualistic plant-pollinator interactions are critical for the functioning of both non-managed and agricultural systems. Mathematical models of plant-pollinator interactions can help understand key determinants in pollination success. However, most previous models have not addressed pollinator behavior and plant biology combined. Information generated from such a model can inform optimal design of crop orchards and effective utilization of managed pollinators like western honey bees (Apis mellifera), and help generate hypotheses about the effects of management practices and cultivar selection. We expect that the number of honey bees per flower and male to female flower ratio will influence fruit yield. To test the relative importance of these effects, both singly and simultaneously, we utilized a delay differential equation model combined with Latin hypercube sampling for sensitivity analysis. Empirical data obtained from historical records and collected in kiwifruit (Actinidia chinensis) orchards in New Zealand were used to parameterize the model. We found that, at realistic bee densities, the optimal orchard had 65-75% female flowers, and the most benefit was gained from the first 6-8 bees/1000 flowers, with diminishing returns thereafter. While bee density significantly impacted fruit production, plant-based parameters-flower density and male:female flower ratio-were the most influential. The predictive model provides strategies for improving crop management, such as choosing cultivars which have their peak bloom on the same day, increasing the number of flowers with approximately 70% female flowers in the orchard, and placing enough hives to maintain more than 6 bees per 1000 flowers to optimize yield.


Subject(s)
Actinidia/physiology , Bees/physiology , Pollination , Algorithms , Animals , Crop Production , Female , Fruit/growth & development , Male , Models, Theoretical , New Zealand , Population Density
7.
Sci Rep ; 9(1): 13538, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31537826

ABSTRACT

Many pollinator species visit multiple crops in multiple regions, yet we know little about their pollination service provisioning at local and regional scales. We investigated the floral visitors (n = 13,200), their effectiveness (n = 1718 single visits) and response to landscape composition across three crops avocado, mango and macadamia within a single growing region (1 year), a single crop (3 years) and across different growing regions in multiple years. In total, eight wild visitor groups were shared across all three crops. The network was dominated by three pollinators, two bees (Apis mellifera and Tetragonula spp.) and a fly, Stomorhina discolor. The visitation network for the three crops was relatively generalised but with the addition of pollen deposition data, specialisation increased. Sixteen managed and wild taxa were consistently present across three years in avocado, yet their contribution to annual network structure varied. Node specialisation (d') analyses indicated many individual orchard sites across each of the networks were significantly more specialised compared to that predicted by null models, suggesting the presence of site-specific factors driving these patterns. Identifying the taxa shared across multiple crops, regions and years will facilitate the development of specific pollinator management strategies to optimize crop pollination services in horticultural systems.


Subject(s)
Crops, Agricultural/growth & development , Pollination/physiology , Agriculture/methods , Animals , Bees/physiology , Diptera/physiology , Ecosystem , Flowers/physiology , Pollen
8.
PeerJ ; 6: e5806, 2018.
Article in English | MEDLINE | ID: mdl-30364410

ABSTRACT

Insect pollinators provide an essential ecosystem service by transferring pollen to crops and native vegetation. The extent to which pollinator communities vary both spatially and temporally has important implications for ecology, conservation and agricultural production. However, understanding the complex interactions that determine pollination service provisioning and production measures over space and time has remained a major challenge. Remote sensing technologies (RST), including satellite, airborne and ground based sensors, are effective tools for measuring the spatial and temporal variability of vegetation health, diversity and productivity within natural and modified systems. Yet while there are synergies between remote sensing science, pollination ecology and agricultural production, research communities have only recently begun to actively connect these research areas. Here, we review the utility of RST in advancing crop pollination research and highlight knowledge gaps and future research priorities. We found that RST are currently used across many different research fields to assess changes in plant health and production (agricultural production) and to monitor and evaluate changes in biodiversity across multiple landscape types (ecology and conservation). In crop pollination research, the use of RST are limited and largely restricted to quantifying remnant habitat use by pollinators by ascertaining the proportion of, and/or isolation from, a given land use type or local variable. Synchronization between research fields is essential to better understand the spatial and temporal variability in pollinator dependent crop production. RST enable these applications to be scaled across much larger areas than is possible with field-based methods and will facilitate large scale ecological changes to be detected and monitored. We advocate greater use of RST to better understand interactions between pollination, plant health and yield spatial variation in pollinator dependent crops. This more holistic approach is necessary for decision-makers to improve strategies toward managing multiple land use types and ecosystem services.

9.
PeerJ ; 4: e2779, 2016.
Article in English | MEDLINE | ID: mdl-28028464

ABSTRACT

BACKGROUND: Functional traits are the primary biotic component driving organism influence on ecosystem functions; in consequence, traits are widely used in ecological research. However, most animal trait-based studies use easy-to-measure characteristics of species that are at best only weakly associated with functions. Animal-mediated pollination is a key ecosystem function and is likely to be influenced by pollinator traits, but to date no one has identified functional traits that are simple to measure and have good predictive power. METHODS: Here, we show that a simple, easy to measure trait (hairiness) can predict pollinator effectiveness with high accuracy. We used a novel image analysis method to calculate entropy values for insect body surfaces as a measure of hairiness. We evaluated the power of our method for predicting pollinator effectiveness by regressing pollinator hairiness (entropy) against single visit pollen deposition (SVD) and pollen loads on insects. We used linear models and AICC model selection to determine which body regions were the best predictors of SVD and pollen load. RESULTS: We found that hairiness can be used as a robust proxy of SVD. The best models for predicting SVD for the flower species Brassica rapa and Actinidia deliciosa were hairiness on the face and thorax as predictors (R2 = 0.98 and 0.91 respectively). The best model for predicting pollen load for B. rapa was hairiness on the face (R2 = 0.81). DISCUSSION: We suggest that the match between pollinator body region hairiness and plant reproductive structure morphology is a powerful predictor of pollinator effectiveness. We show that pollinator hairiness is strongly linked to pollination-an important ecosystem function, and provide a rigorous and time-efficient method for measuring hairiness. Identifying and accurately measuring key traits that drive ecosystem processes is critical as global change increasingly alters ecological communities, and subsequently, ecosystem functions worldwide.

11.
Proc Natl Acad Sci U S A ; 113(1): 146-51, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26621730

ABSTRACT

Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.


Subject(s)
Crops, Agricultural/growth & development , Insecta/physiology , Pollination , Animals , Ants/physiology , Bees/physiology , Ecosystem , Flowers/growth & development , Fruit/growth & development , Wasps/physiology
12.
Nat Commun ; 6: 7414, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26079893

ABSTRACT

There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.


Subject(s)
Bees , Biodiversity , Conservation of Natural Resources , Crops, Agricultural , Pollination , Animals , Crops, Agricultural/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...