Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Biol Psychiatry ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38395372

ABSTRACT

BACKGROUND: Understanding the neurobiological effects of stress is critical for addressing the etiology of major depressive disorder (MDD). Using a dimensional approach involving individuals with differing degree of MDD risk, we investigated 1) the effects of acute stress on cortico-cortical and subcortical-cortical functional connectivity (FC) and 2) how such effects are related to gene expression and receptor maps. METHODS: Across 115 participants (37 control, 39 remitted MDD, 39 current MDD), we evaluated the effects of stress on FC during the Montreal Imaging Stress Task. Using partial least squares regression, we investigated genes whose expression in the Allen Human Brain Atlas was associated with anatomical patterns of stress-related FC change. Finally, we correlated stress-related FC change maps with opioid and GABAA (gamma-aminobutyric acid A) receptor distribution maps derived from positron emission tomography. RESULTS: Results revealed robust effects of stress on global cortical connectivity, with increased global FC in frontoparietal and attentional networks and decreased global FC in the medial default mode network. Moreover, robust increases emerged in FC of the caudate, putamen, and amygdala with regions from the ventral attention/salience network, frontoparietal network, and motor networks. Such regions showed preferential expression of genes involved in cell-to-cell signaling (OPRM1, OPRK1, SST, GABRA3, GABRA5), similar to previous genetic MDD studies. CONCLUSIONS: Acute stress altered global cortical connectivity and increased striatal connectivity with cortical regions that express genes that have previously been associated with imaging abnormalities in MDD and are rich in µ and κ opioid receptors. These findings point to overlapping circuitry underlying stress response, reward, and MDD.

2.
NPJ Parkinsons Dis ; 10(1): 34, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336768

ABSTRACT

Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons. Exercise has been reported to slow the clinical progression of PD. We evaluated the dopaminergic system of patients with mild and early PD before and after a six-month program of intense exercise. Using 18F-FE-PE2I PET imaging, we measured dopamine transporter (DAT) availability in the striatum and substantia nigra. Using NM-MRI, we evaluated the neuromelanin content in the substantia nigra. Exercise reversed the expected decrease in DAT availability into a significant increase in both the substantia nigra and putamen. Exercise also reversed the expected decrease in neuromelanin concentration in the substantia nigra into a significant increase. These findings suggest improved functionality in the remaining dopaminergic neurons after exercise. Further research is needed to validate our findings and to pinpoint the source of any true neuromodulatory and neuroprotective effects of exercise in PD in large clinical trials.

3.
EJNMMI Phys ; 10(1): 80, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38079001

ABSTRACT

BACKGROUND: Drug occupancy studies with positron emission tomography imaging are used routinely in early phase drug development trials. Recently, our group introduced the Lassen Plot Filter, an extended version of the standard Lassen plot to estimate voxel-level occupancy images. Occupancy images can be used to create an EC50 image by applying an Emax model at each voxel. Our goal was to apply functional clustering of occupancy images via a clustering algorithm and produce a more precise EC50 image while maintaining accuracy. METHOD: A digital brain phantom was used to create 10 occupancy images (corresponding to 10 different plasma concentrations of drug) that correspond to a ground truth EC50 image containing two bilateral local "hot spots" of high EC50 (region-1: 25; region-2: 50; background: 6-10 ng/mL). Maximum occupancy was specified as 0.85. An established noise model was applied to the simulated occupancy images and the images were smoothed. Simple Linear Iterative Clustering, an existing k-means clustering algorithm, was modified to segment a series of occupancy images into K clusters (which we call "SLIC-Occ"). EC50 images were estimated by nonlinear estimation at each cluster (post SLIC-Occ) and voxel (no clustering). Coefficient of variation images were estimated at each cluster and voxel, respectively. The same process was also applied to human occupancy data produced for a previously published study. RESULTS: Variability in EC50 estimates was reduced by more than 80% in the phantom data after application of SLIC-Occ to occupancy images with only minimal loss of accuracy. A similar, but more modest improvement was achieved in variability when SLIC-Occ was applied to human occupancy images. CONCLUSIONS: Our results suggest that functional segmentation of occupancy images via SLIC-Occ could produce more precise EC50 images and improve our ability to identify local "hot spots" of high effective affinity of a drug for its target(s).

4.
Eur Radiol ; 33(8): 5779-5791, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36894753

ABSTRACT

OBJECTIVE: To develop and evaluate task-based radiomic features extracted from the mesenteric-portal axis for prediction of survival and response to neoadjuvant therapy in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS: Consecutive patients with PDAC who underwent surgery after neoadjuvant therapy from two academic hospitals between December 2012 and June 2018 were retrospectively included. Two radiologists performed a volumetric segmentation of PDAC and mesenteric-portal axis (MPA) using a segmentation software on CT scans before (CTtp0) and after (CTtp1) neoadjuvant therapy. Segmentation masks were resampled into uniform 0.625-mm voxels to develop task-based morphologic features (n = 57). These features aimed to assess MPA shape, MPA narrowing, changes in shape and diameter between CTtp0 and CTtp1, and length of MPA segment affected by the tumor. A Kaplan-Meier curve was generated to estimate the survival function. To identify reliable radiomic features associated with survival, a Cox proportional hazards model was used. Features with an ICC ≥ 0.80 were used as candidate variables, with clinical features included a priori. RESULTS: In total, 107 patients (60 men) were included. The median survival time was 895 days (95% CI: 717, 1061). Three task-based shape radiomic features (Eccentricity mean tp0, Area minimum value tp1, and Ratio 2 minor tp1) were selected. The model showed an integrated AUC of 0.72 for prediction of survival. The hazard ratio for the Area minimum value tp1 feature was 1.78 (p = 0.02) and 0.48 for the Ratio 2 minor tp1 feature (p = 0.002). CONCLUSION: Preliminary results suggest that task-based shape radiomic features can predict survival in PDAC patients. KEY POINTS: • In a retrospective study of 107 patients who underwent neoadjuvant therapy followed by surgery for PDAC, task-based shape radiomic features were extracted and analyzed from the mesenteric-portal axis. • A Cox proportional hazards model that included three selected radiomic features plus clinical information showed an integrated AUC of 0.72 for prediction of survival, and a better fit compared to the model with only clinical information.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Male , Humans , Retrospective Studies , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/therapy , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/therapy , Tomography, X-Ray Computed/methods , Pancreatic Neoplasms
5.
Brain Imaging Behav ; 17(3): 367-371, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36695971

ABSTRACT

Striatal kappa opioid receptor (KOR) availability in 48 subjects with Alcohol Use Disorder (AUD) was previously found to be associated with degree of drinking following a week of naltrexone treatment (de Laat et al. Biological Psychiatry, 86(11), 864-871, 2019). The purpose of the current study was to determine if spectral clustering applied to previously acquired KOR images (with [11C]LY2795050 PET) could identify meaningful groupings of different responses to naltrexone and to assess the robustness of the finding. Spectral clustering was applied to 6 features (regional volume of distribution values, VT) per AUD subject to produce 3 classes of subjects with different mean responses to naltrexone. Response to naltrexone was quantified as the difference in drinks consumed in an established lab-based alcohol drinking paradigm (Krishnan-Sarin et al. Biological Psychiatry, 62(6), 694-697, 2007) prior to, and after a week of naltrexone treatment. Clustering was applied exclusively to features of the image data with no a priori knowledge of the subjects' responses. Separation of classes was tested using a 1-way analysis of variance (ANOVA) with drink reduction as the outcome of interest. To assess robustness of the result, the size of the training set was varied by using successively reduced subsets of the data. Clustering resulted in significantly different groupings of drink reduction. The finding was robust to initialization of the spectral clustering procedure and was replicable for different random subsets of training subjects. Finding: Spectral clustering of kappa PET images separates AUD subjects into behaviorally distinct groups expressing distinct responses to naltrexone.


Subject(s)
Alcoholism , Naltrexone , Humans , Naltrexone/therapeutic use , Alcoholism/diagnostic imaging , Alcoholism/drug therapy , Receptors, Opioid, kappa , Magnetic Resonance Imaging , Alcohol Drinking , Positron-Emission Tomography/methods
6.
Brain Behav Immun ; 106: 262-269, 2022 11.
Article in English | MEDLINE | ID: mdl-36058419

ABSTRACT

Immune-brain interactions influence the pathophysiology of addiction. Lipopolysaccharide (LPS)-induced systemic inflammation produces effects on reward-related brain regions and the dopamine system. We previously showed that LPS amplifies dopamine elevation induced by methylphenidate (MP), compared to placebo (PBO), in eight healthy controls. However, the effects of LPS on the dopamine system of tobacco smokers have not been explored. The goal of Study 1 was to replicate previous findings in an independent cohort of tobacco smokers. The goal of Study 2 was to combine tobacco smokers with the aforementioned eight healthy controls to examine the effect of LPS on dopamine elevation in a heterogenous sample for power and effect size determination. Eight smokers were each scanned with [11C]raclopride positron emission tomography three times-at baseline, after administration of LPS (0.8 ng/kg, intravenously) and MP (40 mg, orally), and after administration of PBO and MP, in a double-blind, randomized order. Dopamine elevation was quantified as change in [11C]raclopride binding potential (ΔBPND) from baseline. A repeated-measures ANOVA was conducted to compare LPS and PBO conditions. Smokers and healthy controls were well-matched for demographics, drug dosing, and scanning parameters. In Study 1, MP-induced striatal dopamine elevation was significantly higher following LPS than PBO (p = 0.025, 18 ± 2.9 % vs 13 ± 2.7 %) for smokers. In Study 2, MP-induced striatal dopamine elevation was also significantly higher under LPS than under PBO (p < 0.001, 18 ± 1.6 % vs 11 ± 1.5 %) in the combined sample. Smoking status did not interact with the effect of condition. This is the first study to translate the phenomenon of amplified dopamine elevation after experimental activation of the immune system to an addicted sample which may have implications for drug reinforcement, seeking, and treatment.


Subject(s)
Central Nervous System Stimulants , Methylphenidate , Central Nervous System Stimulants/pharmacology , Corpus Striatum/diagnostic imaging , Corpus Striatum/metabolism , Dopamine/metabolism , Humans , Inflammation/metabolism , Lipopolysaccharides/metabolism , Methylphenidate/pharmacology , Positron-Emission Tomography , Raclopride/metabolism , Raclopride/pharmacology , Smokers
7.
EJNMMI Phys ; 9(1): 27, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35416555

ABSTRACT

BACKGROUND: There has been an ongoing need to compare and combine the results of new PET imaging studies conducted with [11C]raclopride with older data. This typically means harmonizing data across different scanners. Previous harmonization studies have utilized either phantoms or human subjects, but the use of both phantoms and humans in one harmonization study is not common. The purpose herein was (1) to use phantom images to develop an inter-scanner harmonization technique and (2) to test the harmonization technique in human subjects. METHODS: To develop the harmonization technique (Experiment 1), the Iida brain phantom was filled with F-18 solution and scanned on the two scanners in question (HRRT, HR+, Siemens/CTI). Phantom images were used to determine the optimal isotropic Gaussian filter to harmonize HRRT and HR+ images. To evaluate the harmonization on human images (Experiment 2), inter-scanner variability was calculated using [11C]raclopride scans of 3 human subjects on both the HRRT and HR+ using percent difference (PD) in striatal non-displaceable binding potential (BPND) between HR+ and HRRT (with and without Gaussian smoothing). Finally, (Experiment 3), PDT/RT was calculated for test-retest (T/RT) variability of striatal BPND for 8 human subjects scanned twice on the HR+. RESULTS: Experiment 1 identified the optimal filter as a Gaussian with a 4.5 mm FWHM. Experiment 2 resulted in 13.9% PD for unfiltered HRRT and 3.71% for HRRT filtered with 4.5 mm. Experiment 3 yielded 5.24% PDT/RT for HR+. CONCLUSIONS: The PD results show that the variability of harmonized HRRT is less than the T/RT variability of the HR+. The harmonization technique makes it possible for BPND estimates from the HRRT to be compared to (and/or combined with) those from the HR+ without adding to overall variability. Our approach is applicable to all pairs of scanners still in service.

8.
Eur J Nucl Med Mol Imaging ; 49(4): 1232-1241, 2022 03.
Article in English | MEDLINE | ID: mdl-34636937

ABSTRACT

PURPOSE: We recently introduced voxel-level images of drug occupancy from PET via our "Lassen plot filter." Occupancy images revealed clear dependence of 11C-flumazenil displacement on dose of GABAa inhibitor, CVL-865, but with different scales in different brain regions. We hypothesized that regions requiring higher drug concentrations to achieve desired occupancy would have higher EC50 values. We introduce an "EC50 image" from human data to evaluate this hypothesis. METHODS: Five healthy subjects were scanned with the nonselective GABAa tracer, 11C-flumazenil, before and (twice) after administration of CVL-865. We created ten occupancy images and applied an Emax model locally to create one EC50 image. We also performed simulations to confirm our observations of regional variation in EC50 and to identify the main source of variability in EC50. RESULTS: As expected, the EC50 image revealed spatial variation in apparent drug affinity. High EC50 was found in areas of low occupancy for a given drug dose. Simulations demonstrated that sampling from an inadequate range of plasma drug concentrations could impair precision. CONCLUSION: Our results argue for (a) confidence in the ability of the EC50 images to identify regional differences and (b) a need to tailor the range of drug doses in an occupancy study to regularize the precision of the EC50 throughout the brain. The EC50 image could add value to early-phase drug development by identifying regional variation in affinity that might impact therapy or safety and by guiding dose selection for later-phase trials.


Subject(s)
Flumazenil , Positron-Emission Tomography , Brain/diagnostic imaging , Healthy Volunteers , Humans , Pharmaceutical Preparations , Positron-Emission Tomography/methods
9.
Acad Radiol ; 29(4): e61-e72, 2022 04.
Article in English | MEDLINE | ID: mdl-34130922

ABSTRACT

RATIONALE AND OBJECTIVES: The accuracy of measured radiomics features is affected by CT imaging protocols. This study aims to ascertain if applying bias corrections can improve the classification performance of the radiomics features. MATERIALS AND METHODS: A cohort of 144 Non-Small Cell Lung Cancer patient CT images was used to calculate radiomics features for use in predictive models of patient pathological stage. Simulation models of the tumors, matched to patient lesion qualities of size, contrast, and degree of spiculation, were used to both create and assess protocol-specific correction factors. The usefulness of correction was first assessed by applying the corrections to simulated lesion phantoms with known properties using a corrected paired Student's t-test. The sensitivity of radiomics features to correction factors was assessed by applying a library of possible theoretical correction factors to the uncorrected radiomics from the patient data. The data were then used to assess the effect of the correction on prediction performance (AUC) from a logistic regression radiomics model across the patient cases. RESULTS: The correction factors were shown to reduce the bias of radiomics features, caused by protocols, provided that the correction factors were derived from lesion models with similar properties. The sensitivity of the radiomics features to changes due to protocol effects was on average 89% among all features. The corrections applied to patient data resulted in a small increase of 0.0074 in AUC that was not statistically significant (p=0.60). CONCLUSION: Protocol-specific correction factors can be applied to radiomics studies to control for biases introduced by different imaging protocols. The correction factors should ideally be lesion-specific, derived using lesion models that echo patient lesion characteristics in terms of size, contrast, and degree of spiculation. Small corrections in the 10% range offers only a small improvement in the predictability of radiomics.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Bias , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Humans , Lung Neoplasms/diagnostic imaging , Retrospective Studies , Tomography, X-Ray Computed/methods
10.
Radiology ; 301(3): 610-622, 2021 12.
Article in English | MEDLINE | ID: mdl-34491129

ABSTRACT

Background Current imaging methods for prediction of complete margin resection (R0) in patients with pancreatic ductal adenocarcinoma (PDAC) are not reliable. Purpose To investigate whether tumor-related and perivascular CT radiomic features improve preoperative assessment of arterial involvement in patients with surgically proven PDAC. Materials and Methods This retrospective study included consecutive patients with PDAC who underwent surgery after preoperative CT between 2012 and 2019. A three-dimensional segmentation of PDAC and perivascular tissue surrounding the superior mesenteric artery (SMA) was performed on preoperative CT images with radiomic features extracted to characterize morphology, intensity, texture, and task-based spatial information. The reference standard was the pathologic SMA margin status of the surgical sample: SMA involved (tumor cells ≤1 mm from margin) versus SMA not involved (tumor cells >1 mm from margin). The preoperative assessment of SMA involvement by a fellowship-trained radiologist in multidisciplinary consensus was the comparison. High reproducibility (intraclass correlation coefficient, 0.7) and the Kolmogorov-Smirnov test were used to select features included in the logistic regression model. Results A total of 194 patients (median age, 66 years; interquartile range, 60-71 years; age range, 36-85 years; 99 men) were evaluated. Aside from surgery, 148 patients underwent neoadjuvant therapy. A total of 141 patients' samples did not involve SMA, whereas 53 involved SMA. A total of 1695 CT radiomic features were extracted. The model with five features (maximum hugging angle, maximum diameter, logarithm robust mean absolute deviation, minimum distance, square gray level co-occurrence matrix correlation) showed a better performance compared with the radiologist assessment (model vs radiologist area under the curve, 0.71 [95% CI: 0.62, 0.79] vs 0.54 [95% CI: 0.50, 0.59]; P < .001). The model showed a sensitivity of 62% (33 of 53 patients) (95% CI: 51, 77) and a specificity of 77% (108 of 141 patients) (95% CI: 60, 84). Conclusion A model based on tumor-related and perivascular CT radiomic features improved the detection of superior mesenteric artery involvement in patients with pancreatic ductal adenocarcinoma. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Do and Kambadakone in this issue.


Subject(s)
Adenocarcinoma/surgery , Carcinoma, Pancreatic Ductal/surgery , Margins of Excision , Mesenteric Artery, Superior/diagnostic imaging , Mesenteric Artery, Superior/pathology , Pancreatic Neoplasms/surgery , Tomography, X-Ray Computed/methods , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Pancreatic Ducts/surgery , Pilot Projects , Preoperative Care/methods , Reproducibility of Results , Retrospective Studies , Pancreatic Neoplasms
12.
Eur Radiol ; 31(9): 7022-7030, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33624163

ABSTRACT

OBJECTIVES: Quantifying radiation burden is essential for justification, optimization, and personalization of CT procedures and can be characterized by a variety of risk surrogates inducing different radiological risk reflections. This study compared how twelve such metrics can characterize risk across patient populations. METHODS: This study included 1394 CT examinations (abdominopelvic and chest). Organ doses were calculated using Monte Carlo methods. The following risk surrogates were considered: volume computed tomography dose index (CTDIvol), dose-length product (DLP), size-specific dose estimate (SSDE), DLP-based effective dose (EDk ), dose to a defining organ (ODD), effective dose and risk index based on organ doses (EDOD, RI), and risk index for a 20-year-old patient (RIrp). The last three metrics were also calculated for a reference ICRP-110 model (ODD,0, ED0, and RI0). Lastly, motivated by the ICRP, an adjusted-effective dose was calculated as [Formula: see text]. A linear regression was applied to assess each metric's dependency on RI. The results were characterized in terms of risk sensitivity index (RSI) and risk differentiability index (RDI). RESULTS: The analysis reported significant differences between the metrics with EDr showing the best concordance with RI in terms of RSI and RDI. Across all metrics and protocols, RSI ranged between 0.37 (SSDE) and 1.29 (RI0); RDI ranged between 0.39 (EDk) and 0.01 (EDr) cancers × 103patients × 100 mGy. CONCLUSION: Different risk surrogates lead to different population risk characterizations. EDr exhibited a close characterization of population risk, also showing the best differentiability. Care should be exercised in drawing risk predictions from unrepresentative risk metrics applied to a population. KEY POINTS: • Radiation risk characterization in CT populations is strongly affected by the surrogate used to describe it. • Different risk surrogates can lead to different characterization of population risk. • Healthcare professionals should exercise care in ascribing an implicit risk to factors that do not closely reflect risk.


Subject(s)
Thorax , Tomography, X-Ray Computed , Adult , Benchmarking , Humans , Monte Carlo Method , Radiation Dosage , Young Adult
13.
Acad Radiol ; 28(11): 1570-1581, 2021 11.
Article in English | MEDLINE | ID: mdl-32828664

ABSTRACT

RATIONALE AND OBJECTIVES: The 3-fold purpose of this study was to (1) develop a method to relate measured differences in radiomics features in different computed tomography (CT) scans to one another and to true feature differences; (2) quantify minimum detectable change in radiomics features based on measured radiomics features from pairs of synthesized CT images acquired under variable CT scan settings, and (3) ascertain and inform the recommendations of the Quantitative Imaging Biomarkers Alliance (QIBA) for nodule volumetry. MATERIALS AND METHODS: Images of anthropomorphic lung nodule models were simulated using resolution and noise properties for 297 unique imaging conditions. Nineteen morphology features were calculated from both the segmentation masks derived from the imaged nodules and from ground truth nodules. Analysis was performed to calculate minimum detectable difference of radiomics features as a function of imaging protocols in comparison to QIBA guidelines. RESULTS: The minimum detectable differences ranged from 1% to 175% depending on the specific feature and set of imaging protocols. The results showed that QIBA protocol recommendations result in improved minimum detectable difference as compared to the range of possible protocols. The results showed that the minimum detectable differences may be improved from QIBA's current recommendation by further restricting the slice thickness requirement to be between 0.5 mm and 1 mm. CONCLUSION: Minimum detectable differences of radiomics features were quantified for lung nodules across a wide range of possible protocols. The results can be used prospectively to inform decision-making about imaging protocols to provide superior quantification of radiomics features.


Subject(s)
Lung Neoplasms , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Phantoms, Imaging
14.
Med Phys ; 46(11): 5262-5272, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31442324

ABSTRACT

PURPOSE: The purpose of this study was to simulate and validate organ doses from different computed tomography (CT) localizer radiograph geometries using Monte Carlo methods for a population of patients. METHODS: A Monte Carlo method was developed to estimate organ doses from CT localizer radiographs using PENELOPE. The method was validated by comparing dosimetry estimates with measurements using an anthropomorphic phantom imbedded with thermoluminescent dosimeters (TLDs) scanned on a commercial CT system (Siemens SOMATOM Flash). The Monte Carlo simulation platform was then applied to conduct a population study with 57 adult computational phantoms (XCAT). In the population study, clinically relevant chest localizer protocols were simulated with the x-ray tube in anterior-posterior (AP), right lateral, and PA positions. Mean organ doses and associated standard deviations (in mGy) were then estimated for all simulations. The obtained organ doses were studied as a function of patient chest diameter. Organ doses for breast and lung were compared across different views and represented as a percentage of organ doses from rotational CT scans. RESULTS: The validation study showed an agreement between the Monte Carlo and physical TLD measurements with a maximum percent difference of 15.5% and a mean difference of 3.5% across all organs. The XCAT population study showed that breast dose from AP localizers was the highest with a mean value of 0.24 mGy across patients, while the lung dose was relatively consistent across different localizer geometries. The organ dose estimates were found to vary across the patient population, partially explained by the changes in the patient chest diameter. The average effective dose was 0.18 mGy for AP, 0.09 mGy for lateral, and 0.08 mGy for PA localizer. CONCLUSION: A platform to estimate organ doses in CT localizer scans using Monte Carlo methods was implemented and validated based on comparison with physical dose measurements. The simulation platform was applied to a virtual patient population, where the localizer organ doses were found to range within 0.4%-8.6% of corresponding organ doses for a typical CT scan, 0.2%-3.3% of organ doses for a CT pulmonary angiography scan, and 1.1%-20.8% of organ doses for a low-dose lung cancer screening scan.


Subject(s)
Monte Carlo Method , Radiation Dosage , Tomography, X-Ray Computed , Adult , Early Detection of Cancer , Humans , Lung Neoplasms/diagnostic imaging , Phantoms, Imaging
15.
J Med Imaging (Bellingham) ; 6(2): 021606, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31263737

ABSTRACT

We aimed to design and fabricate synthetic lung nodules with patient-informed internal heterogeneity to assess the variability and accuracy of measured texture features in CT. To that end, 190 lung nodules from a publicly available database of chest CT images (Lung Image Database Consortium) were selected based on size ( > 3 mm ) and malignancy. The texture features of the nodules were used to train a statistical texture synthesis model based on clustered lumpy background. The model parameters were ascertained based on a genetic optimization of a Mahalanobis distance objective function. The resulting texture model defined internal heterogeneity within 24 anthropomorphic lesion models which were subsequently fabricated into physical phantoms using a multimaterial three-dimensional (3-D) printer. The 3-D-printed lesions were imbedded in an anthropomorphic chest phantom and imaged with a clinical scanner using different acquisition parameters including slice thickness, dose level, and reconstruction kernel. The imaged lesions were analyzed in terms of texture features to ascertain the impact of CT imaging on lesion texture quantification. The texture modeling method produced lesion models with low and stable Mahalanobis distance between real and synthetic textures. The virtual lesions were successfully printed into 3-D phantoms. The accuracy and variability of the measured features extracted from the CT images of the phantoms showed notable influence from the imaging acquisition parameters with contrast, energy, and texture entropy exhibiting most sensitivity in terms of accuracy, and contrast, dissimilarity, and texture entropy most variability. Thinner slice thicknesses yielded more accurate and edge reconstruction kernels more stable results. We conclude that printed textured models of lesions can be developed using a method that can target and minimize the mathematical distance between real and synthetic lesions. The synthetic lesions can be used as the basis to investigate how CT imaging conditions might affect radiomics features derived from CT images.

16.
J Med Imaging (Bellingham) ; 6(3): 033503, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31338387

ABSTRACT

Texture is a key radiomics measurement for quantification of disease and disease progression. The sensitivity of the measurements to image acquisition, however, is uncertain. We assessed bias and variability of computed tomography (CT) texture feature measurements across many clinical image acquisition settings and reconstruction algorithms. Diverse, anatomically informed textures (texture A, B, and C) were simulated across 1188 clinically relevant CT imaging conditions representing four in-plane pixel sizes (0.4, 0.5, 0.7, and 0.9 mm), three slice thicknesses (0.625, 1.25, and 2.5 mm), three dose levels ( CTDI vol 1.90, 3.75, and 7.50 mGy), and 33 reconstruction kernels. Imaging conditions corresponded to noise and resolution properties representative of five commercial scanners (GE LightSpeed VCT, GE Discovery 750 HD, GE Revolution, Siemens Definition Flash, and Siemens Force) in filtered backprojection and iterative reconstruction. About 21 texture features were calculated and compared between the ground-truth phantom (i.e., preimaging) and its corresponding images. Each feature was measured with four unique volumes of interest (VOIs) sizes (244, 579, 1000, and 1953 mm 3 . To characterize the bias, the percentage relative difference [PRD(%)] in each feature was calculated between the imaged scenario and the ground truth for all VOI sizes. Feature variability was assessed in terms of (1)  σ PRD ( % ) indicating the variability between the ground truth and simulated image scenario based on the PRD(%), (2)  COV f indicating the simulation-based variability, and (3)  COV T indicating the natural variability present in the ground-truth phantom. The PRD ranged widely from - 97 % to 1220%, with an underlying variability ( σ ) of up to 241%. Features such as gray-level nonuniformity, texture entropy, sum average, and homogeneity exhibited low susceptibility to reconstruction kernel effects ( PRD < 3 % ) with relatively small σ PRD ( % ) ( ≤ 5 % ) across imaging conditions. The dynamic range of results indicates that image acquisition and reconstruction conditions of in-plane pixel sizes, slice thicknesses, dose levels, and reconstruction kernels can lead to significant bias and variability in feature measurements.

17.
J Med Imaging (Bellingham) ; 6(1): 013504, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30944842

ABSTRACT

We propose to characterize the bias and variability of quantitative morphology features of lung lesions across a range of computed tomography (CT) imaging conditions. A total of 15 lung lesions were simulated (five in each of three spiculation classes: low, medium, and high). For each lesion, a series of simulated CT images representing different imaging conditions were synthesized by applying three-dimensional blur and adding correlated noise based on the measured noise and resolution properties of five commercial multislice CT systems, representing three dose levels ( CTDI vol of 1.90, 3.75, 7.50 mGy), three slice thicknesses (0.625, 1.25, 2.5 mm), and 33 clinical reconstruction kernels from five clinical scanners. The images were segmented using three segmentation algorithms and each algorithm was evaluated by computing a Sørensen-Dice coefficient between the ground truth and the segmentation. A series of 21 shape-based morphology features were extracted from both "ground truth" (i.e., preblur without noise) and "image rendered" lesions (i.e., postblur and with noise). For each morphology feature, the bias was quantified by comparing the percentage relative error in the morphology metric between the imaged lesions and the ground-truth lesions. The variability was characterized by calculating the average coefficient of variation averaged across repeats and imaging conditions. The active contour segmentation had the highest average Dice coefficient of 0.80 followed by 0.63 for threshold, and 0.39 for fuzzy c-means. The bias of the features was segmentation algorithm and feature-dependent, with sharper kernels being less biased and smoother kernels being more biased in general. The feature variability from simulated images ranged from 0.30% to 10% for repeats of the same condition and from 0.74% to 25.3% for different lesions in the same spiculation class. In conclusion, the bias of morphology features is dependent on the acquisition protocol in combination with the segmentation algorithm used and the variability is primarily dependent on the segmentation algorithm.

18.
Pain Med ; 20(5): 971-978, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30215781

ABSTRACT

OBJECTIVE: The goal of the study was to determine the potential impact of system inaccuracies and table attenuation on fluoroscope-reported dose values. DESIGN: An Institutional Review Board-approved study was conducted to collect detailed acquisition and patient exposure data for fluoroscopy-guided lumbar epidural injections. BACKGROUND: System-reported dosimetry values, especially the air Kinetic Energy Released per unit MAss and dose-area product metrics, are routinely used for estimating the radiation burden to patients undergoing fluoroscopy-guided procedures. However, these metrics do not account for other factors, such as acquisition geometry, where the table may attenuate a substantial fraction of the x-ray intensity, and system dosimetry inaccuracies, which are only required to be accurate within ±35%. METHODS: Acquisition data from 46 patients undergoing fluoroscopy-guided lumbar epidural injections were collected to better estimate the true incident dose-area product. Gantry angles, x-ray technique factors, and field sizes were collected to characterize each procedure. Additionally, the fluoroscope dosimetry accuracy and table attenuation properties were evaluated as a function of kVp to generate the correction factors necessary for accurate dosimetry estimates. RESULTS: The system-reported values overestimated the total patient entrance dose-area product by an average of 34% (13-44%). Errors may be substantially higher for systems with less accurate fluoroscopes or more anterior-posterior projections. Correcting system-reported dosimetry values for systematic inaccuracies and variability can substantially improve fluoroscopic dose values. CONCLUSIONS: Including corrections for system output inaccuracies and acquisition factors such as table attenuation is necessary for any reliable assessment of radiation burden to patients associated with fluoroscopy-guided procedures.


Subject(s)
Injections, Epidural/methods , Radiation Dosage , Radiography, Interventional/methods , Radiometry/methods , Adrenal Cortex Hormones/administration & dosage , Fluoroscopy/methods , Humans , Lumbosacral Region
19.
J Med Imaging (Bellingham) ; 5(3): 035504, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30840716

ABSTRACT

Using hybrid datasets consisting of patient-derived computed tomography (CT) images with digitally inserted computational tumors, we establish volumetric interchangeability between real and computational lung tumors in CT. Pathologically-confirmed malignancies from 30 thoracic patient cases from the RIDER database were modeled. Tumors were either isolated or attached to lung structures. Patient images were acquired on one of two CT scanner models (Lightspeed 16 or VCT; GE Healthcare) using standard chest protocol. Real tumors were segmented and used to inform the size and shape of simulated tumors. Simulated tumors developed in Duke Lesion Tool (Duke University) were inserted using a validated image-domain insertion program. Four readers performed volume measurements using three commercial segmentation tools. We compared the volume estimation performance of segmentation tools between real tumors in actual patient CT images and corresponding simulated tumors virtually inserted into the same patient images (i.e., hybrid datasets). Comparisons involved (1) direct assessment of measured volumes and the standard deviation between simulated and real tumors across readers and tools, respectively, (2) multivariate analysis, involving segmentation tools, readers, tumor shape, and attachment, and (3) effect of local tumor environment on volume measurement. Volume comparison showed consistent trends (9% volumetric difference) between real and simulated tumors across all segmentation tools, readers, shapes, and attachments. Across all cases, readers, and segmentation tools, an intraclass correlation coefficient = 0.99 indicates that simulated tumors correlated strongly with real tumors ( p = 0.95 ). In addition, the impact of the local tumor environment on tumor volume measurement was found to have a segmentation tool-related influence. Strong agreement between simulated tumors modeled in this study compared to their real counterparts suggests a high degree of similarity. This indicates that, volumetrically, simulated tumors embedded into patient CT data can serve as reasonable surrogates to real patient data.

20.
J Med Imaging (Bellingham) ; 4(3): 031207, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28804729

ABSTRACT

The purpose of this study was to investigate relationships between patient attributes and organ dose for a population of computational phantoms for 20 tomosynthesis and radiography protocols. Organ dose was estimated from 54 adult computational phantoms (age: 18 to 78 years, weight 52 to 117 kg) using a validated Monte-Carlo simulation (PENELOPE) of a system capable of performing tomosynthesis and radiography. The geometry and field of view for each exam were modeled to match clinical protocols. For each protocol, the energy deposited in each organ was estimated by the simulations, converted to dose units, and then normalized by exposure in air. Dose to radiosensitive organs was studied as a function of average patient thickness in the region of interest and as a function of body mass index. For tomosynthesis, organ doses were also studied as a function of x-ray tube position. This work developed comprehensive information for organ dose dependencies across a range of tomosynthesis and radiography protocols. The results showed a protocol-dependent exponential decrease with an increasing patient size. There was a variability in organ dose across the patient population, which should be incorporated in the metrology of organ dose. The results can be used to prospectively and retrospectively estimate organ dose for tomosynthesis and radiography.

SELECTION OF CITATIONS
SEARCH DETAIL
...