Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Expr Purif ; 219: 106484, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614377

ABSTRACT

Cancer and antibiotic resistance represent significant global challenges, affecting public health and healthcare systems worldwide. Lectin, a carbohydrate-binding protein, displays various biological properties, including antimicrobial and anticancer activities. This study focused on anticancer and antibacterial properties of Alocasia macrorrhiza lectin (AML). AML, with a molecular weight of 11.0 ± 1.0 kDa was purified using Ion-exchange chromatography, and the homotetrameric form was detected by gel-filtration chromatography. It agglutinates mouse erythrocytes, that was inhibited by 4-Nitrophenyl-α-d-mannopyranoside. Maximum hemagglutination activity was observed below 60 °C and within a pH range from 8 to 11. Additionally, it exhibited moderate toxicity against brine shrimp nauplii with LD50 values of 321 µg/ml and showed antibacterial activity against Escherichia coli and Shigella dysenteriae. In vitro experiments demonstrated that AML suppressed the proliferation of mice Ehrlich ascites carcinoma (EAC) cells by 35 % and human lung cancer (A549) cells by 40 % at 512 µg/ml concentration. In vivo experiments involved intraperitoneal injection of AML in EAC-bearing mice for five consecutive days at doses of 2.5 and 5.0 mg/kg/day, and the results indicated that AML inhibited EAC cell growth by 37 % and 54 %, respectively. Finally, it can be concluded that AML can be used for further anticancer and antibacterial studies.


Subject(s)
Anti-Bacterial Agents , Carcinoma, Ehrlich Tumor , Animals , Mice , Humans , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Lectins/pharmacology , Plant Lectins/chemistry , Plant Lectins/isolation & purification , Rhizome/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , A549 Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Escherichia coli/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
2.
Biochem Biophys Rep ; 36: 101574, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38024867

ABSTRACT

Atherosclerosis (ATH) is a chronic cardiovascular disease characterized by plaque formation in arteries, and it is a major cause of illness and death. Although therapeutic advances have significantly improved the prognosis of ATH, missing therapeutic targets pose a significant residual threat. This research used a systems biology approach to identify the molecular biomarkers involved in the onset and progression of ATH, analysing microarray gene expression datasets from ATH and tissues impacted by risk factors such as high cholesterol, adipose tissue, smoking, obesity, sedentary lifestyle, stress, alcohol consumption, hypertension, hyperlipidaemia, high fat, diabetes to find the differentially expressed genes (DEGs). Bioinformatic analyses of Protein-Protein Interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) were conducted on differentially expressed genes, revealing metabolic and signaling pathways (the chemokine signaling pathway, cytokine-cytokine receptor interaction, the cytosolic DNA-sensing pathway, the peroxisome proliferator-activated receptors signaling pathway, and the nuclear factor-kappa B signaling pathway), ten hubs proteins (CCL5, CCR1, TLR1, CCR2, FCGR2A, IL1B, CD163, AIF1, CXCL-1 and TNF), five transcription factors (YY1, FOXL1, FOXC1, SRF, and GATA2), and five miRNAs (mir-27a-3p, mir-124-3p, mir-16-5p, mir-129-2-3p, mir-1-3p). These findings identify potential biomarkers that may increase knowledge of the mechanisms underlying ATH and their connection to risk factors, aiding in the development of new therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...