Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Adv Radiat Oncol ; 9(7): 101507, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38799104

ABSTRACT

Purpose: Emerging data suggest that metastasis-directed therapy (MDT) improves outcomes in patients with oligometastatic castration-sensitive prostate cancer (omCSPC). Prostate-specific membrane antigen positron emission tomography (PSMA-PET) can detect occult metastatic disease, and PSMA response has been proposed as a biomarker for treatment response. Herein, we identify and validate a PSMA-PET biomarker for metastasis-free survival (MFS) following MDT in omCSPC. Methods and Materials: We performed an international multi-institutional retrospective study of patients with omCSPC, defined as ≤3 lesions, treated with metastasis-directed stereotactic ablative radiation who underwent PSMA-PET/computed tomography (CT) before and after (median, 6.2 months; range, 2.4-10.9 months) treatment. Pre- and post-MDT PSMA-PET/CT maximum standardized uptake value (SUVmax) was measured for all lesions, and PSMA response was defined as the percent change in SUVmax of the least responsive lesion. PSMA response was both evaluated as a continuous variable and dichotomized into PSMA responders, with a complete/partial response (at least a 30% reduction in SUVmax), and PSMA nonresponders, with stable/progressive disease (less than a 30% reduction in SUVmax). PSMA response was correlated with conventional imaging-defined metastasis-free survival (MFS) via Kaplan-Meier and Cox regression analysis. Results: A total of 131 patients with 261 treated metastases were included in the analysis, with a median follow-up of 29 months (IQR, 18.5-41.3 months). After stereotactic ablative radiation, 70.2% of patients were classified as PSMA responders. Multivariable analysis demonstrated that PSMA response as a continuous variable was associated with a significantly worse MFS (hazard ratio = 1.003; 95% CI, 1.001-1.006; P = .016). Patients classified as PSMA responders were found to have a significantly improved median MFS of 39.9 versus 12 months (P = .001) compared with PSMA nonresponders. Our study is limited as it is a retrospective review of a heterogenous population. Conclusions: After stereotactic ablative radiation, PSMA-PET response appears to be a radiographic biomarker that correlates with MFS in omCSPC. This approach holds promise for guiding clinical management of omCSPC and should be validated in a prospective setting.

2.
Med Phys ; 51(6): 3972-3984, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38669457

ABSTRACT

BACKGROUND: Volumetric modulated arc therapy (VMAT) machine parameter optimization (MPO) remains computationally expensive and sensitive to input dose objectives creating challenges for manual and automatic planning. Reinforcement learning (RL) involves machine learning through extensive trial-and-error, demonstrating performance exceeding humans, and existing algorithms in several domains. PURPOSE: To develop and evaluate an RL approach for VMAT MPO for localized prostate cancer to rapidly and automatically generate deliverable VMAT plans for a clinical linear accelerator (linac) and compare resultant dosimetry to clinical plans. METHODS: We extended our previous RL approach to enable VMAT MPO of a 3D beam model for a clinical linac through a policy network. It accepts an input state describing the current control point and predicts continuous machine parameters for the next control point, which are used to update the input state, repeating until plan termination. RL training was conducted to minimize a dose-based cost function for prescription of 60 Gy in 20 fractions using CT scans and contours from 136 retrospective localized prostate cancer patients, 20 of which had existing plans used to initialize training. Data augmentation was employed to mitigate over-fitting, and parameter exploration was achieved using Gaussian perturbations. Following training, RL VMAT was applied to an independent cohort of 15 patients, and the resultant dosimetry was compared to clinical plans. We also combined the RL approach with our clinical treatment planning system (TPS) to automate final plan refinement, and creating the potential for manual review and edits as required for clinical use. RESULTS: RL training was conducted for 5000 iterations, producing 40 000 plans during exploration. Mean ± SD execution time to produce deliverable VMAT plans in the test cohort was 3.3 ± 0.5 s which were automatically refined in the TPS taking an additional 77.4 ± 5.8 s. When normalized to provide equivalent target coverage, the RL+TPS plans provided a similar mean ± SD overall maximum dose of 63.2 ± 0.6 Gy and a lower mean rectum dose of 17.4 ± 7.4 compared to 63.9 ± 1.5 Gy (p = 0.061) and 21.0 ± 6.0 (p = 0.024) for the clinical plans. CONCLUSIONS: An approach for VMAT MPO using RL for a clinical linac model was developed and applied to automatically generate deliverable plans for localized prostate cancer patients, and when combined with the clinical TPS shows potential to rapidly generate high-quality plans. The RL VMAT approach shows promise to discover advanced linac control policies through trial-and-error, and algorithm limitations and future directions are identified and discussed.


Subject(s)
Deep Learning , Prostatic Neoplasms , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Male , Humans , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Machine Learning
3.
Cancers (Basel) ; 15(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37296845

ABSTRACT

Purpose: To report our design, manufacturing, commissioning and initial clinical experience with a table-mounted range shifter board (RSB) intended to replace the machine-mounted range shifter (MRS) in a synchrotron-based pencil beam scanning (PBS) system to reduce penumbra and normal tissue dose for image-guided pediatric craniospinal irradiation (CSI). Methods: A custom RSB was designed and manufactured from a 3.5 cm thick slab of polymethyl methacrylate (PMMA) to be placed directly under patients, on top of our existing couch top. The relative linear stopping power (RLSP) of the RSB was measured using a multi-layer ionization chamber, and output constancy was measured using an ion chamber. End-to-end tests were performed using the MRS and RSB approaches using an anthropomorphic phantom and radiochromic film measurements. Cone beam CT (CBCT) and 2D planar kV X-ray image quality were compared with and without the RSB present using image quality phantoms. CSI plans were produced using MRS and RSB approaches for two retrospective pediatric patients, and the resultant normal tissue doses were compared. Results: The RLSP of the RSB was found to be 1.163 and provided computed penumbra of 6.9 mm in the phantom compared to 11.8 mm using the MRS. Phantom measurements using the RSB demonstrated errors in output constancy, range, and penumbra of 0.3%, -0.8%, and 0.6 mm, respectively. The RSB reduced mean kidney and lung dose compared to the MRS by 57.7% and 46.3%, respectively. The RSB decreased mean CBCT image intensities by 86.8 HU but did not significantly impact CBCT or kV spatial resolution providing acceptable image quality for patient setup. Conclusions: A custom RSB for pediatric proton CSI was designed, manufactured, modeled in our TPS, and found to significantly reduce lateral proton beam penumbra compared to a standard MRS while maintaining CBCT and kV image-quality and is in routine use at our center.

4.
Med Phys ; 49(11): 6840-6855, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35880711

ABSTRACT

PURPOSE: To investigate the effects of subject motion and gantry rotation speed on computed tomography (CT) image quality over a range of image acquisition speeds for fan-beam (FB) and cone-beam (CB) CT scanners, and quantify the geometric and dosimetric errors introduced by FB and CB sampling in the context of adaptive radiotherapy. METHODS: Images of motion phantoms were acquired using four CT scanners with gantry rotation speeds of 0.5 s/rotation (denoted FB-0.5), 1.9 s/rotation (FB-1.9), 16.6 s/rotation (CB-16.6), and 60.0 s/rotation (CB-60.0). A phantom presenting various tissue densities undergoing motion with 4-s period and ranging in amplitude from ±0.5 to ±10.0 mm was used to characterize motion artifacts (streaks), motion blur (edge-spread function, ESF), and geometric inaccuracy (excursion of insert centroids and distortion of known shape). An anthropomorphic abdomen phantom undergoing ±2.5-mm motion with 4-s period was used to simulate an adaptive radiotherapy workflow, and relative geometric and dosimetric errors were compared between scanners. RESULTS: At ±2.5-mm motion, phantom measurements demonstrated mean ± SD ESF widths of 0.6 ± 0.0, 1.3 ± 0.4, 2.0 ± 1.1, and 2.9 ± 2.0 mm and geometric inaccuracy (excursion) of 2.7 ± 0.4, 4.1 ± 1.2, 2.6 ± 0.7, and 2.0 ± 0.5 mm for the FB-0.5, FB-1.9, CB-16.6, and CB-60.0 scanners, respectively. The results demonstrated nonmonotonic trends with scanner speed for FB and CB geometries. Geometric and dosimetric errors in adaptive radiotherapy plans were largest for the slowest (CB-60.0) scanner and similar for the three faster systems (CB-16.6, FB-1.9, and FB-0.5). CONCLUSIONS: Clinically standard CB-60.0 demonstrates strong image quality degradation in the presence of subject motion, which is mitigated through faster CBCT or FBCT. Although motion blur is minimized for FB-0.5 and FB-1.9, such systems suffer from increased geometric distortion compared to CB-16.6. Each system reflects tradeoffs in image artifacts and geometric inaccuracies that affect treatment delivery/dosimetric error and should be considered in the design of next-generation CT-guided radiotherapy systems.


Subject(s)
Tomography, X-Ray Computed
5.
Front Oncol ; 12: 830981, 2022.
Article in English | MEDLINE | ID: mdl-35449577

ABSTRACT

Purpose: This study aimed to quantitatively evaluate the range uncertainties that arise from daily cone-beam CT (CBCT) images for proton dose calculation compared to CT using a measurement-based technique. Methods: For head and thorax phantoms, wedge-shaped intensity-modulated proton therapy (IMPT) treatment plans were created such that the gradient of the wedge intersected and was measured with a 2D ion chamber array. The measured 2D dose distributions were compared with 2D dose planes extracted from the dose distributions using the IMPT plan calculated on CT and CBCT. Treatment plans of a thymoma cancer patient treated with breath-hold (BH) IMPT were recalculated on 28 CBCTs and 9 CTs, and the resulting dose distributions were compared. Results: The range uncertainties for the head phantom were determined to be 1.2% with CBCT, compared to 0.5% for CT, whereas the range uncertainties for the thorax phantom were 2.1% with CBCT, compared to 0.8% for CT. The doses calculated on CBCT and CT were similar with similar anatomy changes. For the thymoma patient, the primary source of anatomy change was the BH uncertainty, which could be up to 8 mm in the superior-inferior (SI) direction. Conclusion: We developed a measurement-based range uncertainty evaluation method with high sensitivity and used it to validate the accuracy of CBCT-based range and dose calculation. Our study demonstrated that the CBCT-based dose calculation could be used for daily dose validation in selected proton patients.

6.
J Appl Clin Med Phys ; 23(6): e13604, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35413144

ABSTRACT

PURPOSE: To evaluate dosimetric changes detected using synthetic computed tomography (sCT) derived from online cone-beam CTs (CBCT) in pediatric patients treated using intensity-modulated proton therapy (IMPT). METHODS: Ten pediatric patients undergoing IMPT and aligned daily using proton gantry-mounted CBCT were identified for retrospective analysis with treated anatomical sites fully encompassed in the CBCT field of view. Dates were identified when the patient received both a CBCT and a quality assurance CT (qCT) for routine dosimetric evaluation. sCTs were generated based on a deformable registration between the initial plan CT (pCT) and CBCT. The clinical IMPT plans were re-computed on the same day qCT and sCT, and dosimetric changes due to tissue change or response from the initial plan were computed using each image. Linear regression analysis was performed to determine the correlation between dosimetric changes detected using the qCT and the sCT. Gamma analysis was also used to compare the dose distributions computed on the qCT and sCT. RESULTS: The correlation coefficients (p-values) between qCTs and sCTs for changes detected in target coverage, overall maximum dose, and organ at risk dose were 0.97 (< .001), 0.84 (.002) and 0.91 (< .001), respectively. Mean ± SD gamma pass rates of the sCT-based dose compared to the qCT-based dose at 3%/3 mm, 3%/2 mm, and 2%/2 mm criteria were 96.5%±4.5%, 93.2%±6.3%, and 91.3%±7.8%, respectively. Pass rates tended to be lower for targets near lung. CONCLUSION: While insufficient for re-planning, sCTs provide approximate dosimetry without administering additional imaging dose in pediatric patients undergoing IMPT. Dosimetric changes detected using sCTs are correlated with changes detected using clinically-standard qCTs; however, residual differences in dosimetry remain a limitation. Further improvements in sCT image quality may both improve online dosimetric evaluation and reduce imaging dose for pediatric patients by reducing the need for routine qCTs.


Subject(s)
Proton Therapy , Radiotherapy, Intensity-Modulated , Child , Cone-Beam Computed Tomography/methods , Humans , Image Processing, Computer-Assisted/methods , Proton Therapy/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies
7.
Int J Radiat Oncol Biol Phys ; 108(3): 539-545, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32434040

ABSTRACT

PURPOSE: On June 13 to 14, 2019, the American Society for Radiation Oncology and the Radiological Society of North America convened a workshop on the treatment of oligometastatic disease in Washington, DC. The workshop was initiated for several reasons. First, oligometastatic disease is of increasing academic and community interest and has been identified by the American Society for Radiation Oncology membership as a top research priority. Second, emerging imaging and diagnostic technologies are more readily defining and detecting oligometastatic disease, making contemporary discussion of oligometastatic disease especially relevant. Third, radiosurgery and radiation in general are theorized to be ideal noninvasive therapy for the treatment of oligometastatic disease. Finally, innovations in targeted therapy and immune therapy have the potential to reverse widely disseminating disease into an oligometastatic state. METHODS AND MATERIALS: The workshop was organized into 2 keynote addresses, 6 scientific sessions, and 3 group discussions during an end-of-workshop breakout session. New scientific work was presented in the form of 4 oral presentations and a poster session. Workshop participants were charged with attempting to answer 3 critical questions: (1) Can we refine the clinical and biological definitions of oligometastatic disease; (2) how can we better treat oligometastatic disease; and (3) what clinical trials are needed? RESULTS: Here, we present the proceedings of the workshop. CONCLUSIONS: The clinical implications of improved treatment of oligometastatic disease are enormous and immediate. Radiation oncology and diagnostic radiology should rightly be at the forefront of the characterization and treatment of oligometastatic disease. Focused effort is required so that we can translate current efforts of large numbers of studies with few patients to larger studies of larger impact.


Subject(s)
Neoplasm Metastasis , Radiation Oncology/education , Societies, Medical , Biomarkers, Tumor/analysis , Combined Modality Therapy/methods , Humans , Immunotherapy , Molecular Targeted Therapy , Neoplasm Metastasis/diagnostic imaging , Neoplasm Metastasis/immunology , Neoplasm Metastasis/therapy , Physics , Practice Guidelines as Topic , Radiopharmaceuticals , Radiosurgery , Radiotherapy , Randomized Controlled Trials as Topic , Research , United States
8.
Adv Radiat Oncol ; 5(2): 260-268, 2020.
Article in English | MEDLINE | ID: mdl-32280826

ABSTRACT

PURPOSE: Stereotactic ablative radiation therapy (SABR) for oligometastatic prostate cancer (OMPC) may improve clinical outcomes, but current challenges in intrafraction tracking of multiple small targets limits treatment accuracy. A biology-guided radiation therapy (BgRT) delivery system incorporating positron emission tomography (PET) detectors is being developed to use radiotracer uptake as a biologic fiducial for intrafraction tumor tracking to improve geometric accuracy. This study simulates prostate-specific membrane antigen (PSMA)-directed BgRT using a cohort from our phase II randomized trial of SABR in men with recurrent hormone sensitive OMPC and compares dose distributions to clinical SABR (CSABR). METHODS AND MATERIALS: A research treatment planning system (RTPS) was used to replan 15 patients imaged with PSMA-targeted 18F-DCFPyL PET/computed tomography and previously treated with CSABR using conventional linear accelerators (linacs). The RTPS models a prototype ring-mounted linac incorporating PET and kilo-voltage computed tomography imaging subsystems and can be used to optimize BgRT plans, as well as research SABR (RSABR) plans, which use the prototype linac without radiotracer guidance. CSABR, RSABR, and BgRT plans were compared in terms of maximum planning target volume (PTV) dose (Dmax), mean dose to proximal organs at risk (DOAR), conformity index, as well as voxel-wise correlation of dose with PET specific uptake values to investigate possible dose-painting effects. RESULTS: RSABR and BgRT plans resulted in mean ± standard deviation increases in Dmax of 4 ± 11% (P = .21) and 18 ± 15% (P < .001) and reductions in DOAR of -20 ± 19% (P <.001) and -10 ± 19% (P = .02) compared with CSABR. Similar target coverage was maintained with conformity indices of 0.81 ± 0.04 (P < .001) and 0.72 ± 0.08 (P = .44) for RSABR and BgRT compared with 0.74 ± 0.08 for CSABR. Dose and log (specific uptake values) had Pearson correlation coefficients of 0.10 (CSABR), 0.16 (RSABR), and 0.31 (BgRT). CONCLUSIONS: BgRT plans provided similar PTV coverage and conformity compared with CSABR while incorporating underlying PET activity. These results demonstrate feasibility of BgRT optimization enabling online PSMA-targeted, PET-based tracked dose delivery for OMPC.

9.
Radiat Oncol ; 14(1): 145, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31412952

ABSTRACT

BACKGROUND: Heterogeneous target doses are a common by-product from attempts to improve normal tissue sparing in radiosurgery treatment planning. These regions of escalated dose within the target may increase tumor control probability (TCP). Purposely embedding hot spots within tumors during optimization may also increase the TCP. This study discusses and compares five optimization approaches that not only eliminate homogeneity constraints, but also maximize heterogeneity and internal dose escalation. METHODS: Co-planar volumetric modulated arc therapy (VMAT) plans were produced for virtual spherical targets with 2-8 cm diameters, minimum target dose objectives of 25 Gy, and objectives to minimize normal tissue dose. Five other sets of plans were produced with additional target dose objectives: 1) minimum dose-volume histogram (DVH) objective on 10% of the target 2) minimum dose objective on a sub-structure within the target, and 3-5) minimum generalized equivalent uniform dose (gEUD) objectives assuming three different volume-effect parameters. Plans were normalized to provide equivalent maximum OAR dose and were compared in terms of target D0.1 cc, ratio of V12.5 Gy to PTV volume (R50%), monitor units per 5 Gy fraction (MU), and mean multi-leaf collimator (MLC) segment size. All planning approaches were also applied to a clinical patient dataset and compared. RESULTS: Mean ± standard deviation metrics achievable using the baseline and experimental approaches 1-5) included D0.1 cc: 27.7 ± 0.8, 64.6 ± 10.5, 56.5 ± 10.3, 48.9 ± 5.7, 44.8 ± 5.0, and 37.4 ± 4.5 Gy. R50%: 4.64 ± 3.27, 5.15 ± 2.32, 4.83 ± 2.64, 4.42 ± 1.83, 4.45 ± 1.88, and 4.21 ± 1.75. MU: 795 ± 27, 1988 ± 222, 1766 ± 259, 1612 ± 112, 1524 ± 90, and 1362 ± 146. MLC segment size: 4.7 ± 1.6, 2.3 ± 0.7, 2.6 ± 0.8, 2.7 ± 0.7, 2.7 ± 0.8, and 2.8 ± 0.8 cm. CONCLUSIONS: The DVH-based approach provided the highest embedded doses for all target diameters and patient example with modest increases in R50%, achieved by decreasing MLC segment size while increasing MU. These results suggest that embedding doses > 220% of tumor margin dose is feasible, potentially improving TCP for solid tumors.


Subject(s)
Adenocarcinoma/radiotherapy , Neoplasms/radiotherapy , Organs at Risk/radiation effects , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Adenocarcinoma/secondary , Algorithms , Humans , Neoplasms/pathology , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods
10.
Med Phys ; 46(10): 4324-4332, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31329302

ABSTRACT

PURPOSE: The MRI-guided cervical cancer brachytherapy provides unparalleled soft-tissue contrast for target and normal tissue contouring, but eliminates the ability to use conventional metallic fiducials for radiation source path reconstruction as required for treatment planning. Instead, the source path is reconstructed by manually aligning a library model to the signal void produced by the applicator, which takes time intraoperatively and precludes fully automated treatment planning. The purpose of this study is to present and validate an algorithm to automatically reconstruct tandem and ring applicators using MRI for cervical cancer brachytherapy treatment planning. METHODS: Applicators were reconstructed using T2-weighted MR images acquired at 1.5 T from 33 brachytherapy fractions including 10 patients using a model-to-image registration algorithm. The algorithm involves (a) image filtering and maximum intensity projection to highlight the applicator, (b) ring center identification using the circular Hough transform, and (c) three-dimensional surface model registration, optimized by maximizing the image intensity gradient normal to the model surface. Two independent observers manually reconstructed all applicators, enabling the calculation of interobserver variability and establishing a ground truth. Algorithm variability was calculated by comparing algorithm results to each individual observer, and algorithm accuracy was calculated by comparing algorithm results to the ground truth. The algorithm variability and accuracy were compared to the interobserver variability using paired t-tests. RESULTS: Mean ± SD interobserver variability was 0.83 ± 0.31 mm and 0.78 ± 0.29 mm for the ring and tandem, respectively. The algorithm had mean ± SD variability and accuracy of 0.72 ± 0.32 mm (P = 0.02) and 0.60 ± 0.24 mm (P = 0.0005) for the ring, and 0.70 ± 0.29 mm (P = 0.11) and 0.58 ± 0.24 mm (P = 0.004) for the tandem, respectively. CONCLUSIONS: The algorithm variability and accuracy were within the interobserver variability measured in this study. The algorithm accuracy and mean execution time of 10.0 s are sufficient for clinical tandem and ring reconstruction, and are a step toward fully automated tandem and ring brachytherapy treatment planning.


Subject(s)
Brachytherapy , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy , Automation , Female , Humans
11.
Pract Radiat Oncol ; 9(6): e591-e598, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31252089

ABSTRACT

PURPOSE: Nonhomogeneous dose optimization (NHDO) is exploited in stereotactic body radiation therapy (SBRT) to increase dose delivery to the tumor and allow rapid dose falloff to surrounding normal tissues. We investigate changes in plan quality when NHDO is applied to inverse-planned conventionally fractionated radiation therapy (CF-RT) plans in patients with non-small cell lung cancer. METHODS AND MATERIALS: Patients with near-central non-small cell lung cancer treated with CF-RT in 2018 at a single institution were identified. CF-RT plans were replanned using NHDO techniques, including normalizing to a lower isodose line, while maintaining clinically acceptable normal tissue constraints and target coverage. Tumor control probabilities were calculated. We compared delivered CF-RT plans using homogenous dose optimization (HDO) versus NHDO using Wilcoxon signed-rank tests. Median values are reported. RESULTS: Thirteen patients were replanned with NHDO techniques. Planning target volume coverage by the prescription dose was similar (NHDO = 96% vs HDO = 97%, P = .3). All normal-tissue dose constraints were met. NHDO plans were prescribed to a lower-prescription isodose line compared with HDO plans (85% vs 97%, P = .001). NHDO increased mean dose to the planning target volume (73 Gy vs 67 Gy), dose heterogeneity, and dose falloff gradient (P < .03). NHDO decreased mean dose to surrounding lungs, esophagus, and heart (relative reduction of 6%, 14%, and 15%, respectively; P < .05). Other normal tissue objectives improved with NHDO, including total lung V40 and V60, heart V30, and maximum esophageal dose (P < .05). Tumor control probabilities doubled from 31.6% to 65.4% with NHDO (P = .001). CONCLUSIONS: In select patients, NHDO principles used in SBRT optimization can be applied to CF-RT. NHDO results in increased tumor dose, reduction in select organ-at-risk dose objectives, and better maintenance of target coverage and normal-tissue constraints compared with HDO. Our data demonstrate that principles of NHDO used in SBRT can also improve plan quality in CF-RT.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/radiotherapy , Radiotherapy Dosage , Female , Humans , Male
12.
Med Phys ; 46(9): 3961-3973, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31215042

ABSTRACT

PURPOSE: Dosimetric assessment following permanent prostate brachytherapy (PPB) commonly involves seed localization using CT and prostate delineation using coregistered MRI. However, pelvic CT leads to additional imaging dose and requires significant resources to acquire and process both CT and MRI. In this study, we propose an automatic postimplant dosimetry approach that retains MRI for soft-tissue contouring, but eliminates the need for CT and reduces imaging dose while overcoming the inconsistent appearance of seeds on MRI with three projection x rays acquired using a mobile C-arm. METHODS: Implanted seeds are reconstructed using x rays by solving a combinatorial optimization problem and deformably registered to MRI. Candidate seeds are located in MR images using local hypointensity identification. X ray-based seeds are registered to these candidate seeds in three steps: (a) rigid registration using a stochastic evolutionary optimizer, (b) affine registration using an iterative closest point optimizer, and (c) deformable registration using a local feature point search and nonrigid coherent point drift. The algorithm was evaluated using 20 PPB patients with x rays acquired immediately postimplant and T2-weighted MR images acquired the next day at 1.5 T with mean 0.8 × 0.8 × 3.0 mm 3 voxel dimensions. Target registration error (TRE) was computed based on the distance from algorithm results to manually identified seed locations using coregistered CT acquired the same day as the MRI. Dosimetric accuracy was determined by comparing prostate D90 determined using the algorithm and the ground truth CT-based seed locations. RESULTS: The mean ± standard deviation TREs across 20 patients including 1774 seeds were 2.23 ± 0.52 mm (rigid), 1.99 ± 0.49 mm (rigid + affine), and 1.76 ± 0.43 mm (rigid + affine + deformable). The corresponding mean ± standard deviation D90 errors were 5.8 ± 4.8%, 3.4 ± 3.4%, and 2.3 ± 1.9%, respectively. The mean computation time of the registration algorithm was 6.1 s. CONCLUSION: The registration algorithm accuracy and computation time are sufficient for clinical PPB postimplant dosimetry.


Subject(s)
Brachytherapy , Magnetic Resonance Imaging , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiation Dosage , Tomography, X-Ray Computed , Algorithms , Humans , Image Processing, Computer-Assisted , Male , Radiometry , Radiotherapy Dosage
13.
J Appl Clin Med Phys ; 20(6): 125-133, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31112629

ABSTRACT

PURPOSE: The purpose of this work was to compare the dosimetry and delivery times of 3D-conformal (3DCRT)-, volumetric modulated arc therapy (VMAT)-, and tomotherapy-based approaches for spatially fractionated radiation therapy for deep tumor targets. METHODS: Two virtual GRID phantoms were created consisting of 7 "target" cylinders (1-cm diameter) aligned longitudinally along the tumor in a honey-comb pattern, mimicking a conventional GRID block, with 2-cm center-to-center spacing (GRID2 cm ) and 3-cm center-to-center spacing (GRID3 cm ), all contained within a larger cylinder (8 and 10 cm in diameter for the GRID2 cm and GRID3 cm , respectively). In a single patient, a GRID3 cm structure was created within the gross tumor volume (GTV). Tomotherapy, VMAT (6 MV + 6 MV-flattening-filter-free) and multi-leaf collimator segment 3DCRT (6 MV) plans were created using commercially available software. Two tomotherapy plans were created with field widths (TOMO2.5 cm ) 2.5 cm and (TOMO5 cm ) 5 cm. Prescriptions for all plans were set to deliver a mean dose of 15 Gy to the GRID targets in one fraction. The mean dose to the GRID target and the heterogeneity of the dose distribution (peak-to-valley and peak-to-edge dose ratios) inside the GRID target were obtained. The volume of normal tissue receiving 7.5 Gy was determined. RESULTS: The peak-to-valley ratios for GRID2 cm /GRID3 cm /Patient were 2.1/2.3/2.8, 1.7/1.5/2.8, 1.7/1.9/2.4, and 1.8/2.0/2.8 for the 3DCRT, VMAT, TOMO5 cm , and TOMO2.5 cm plans, respectively. The peak-to-edge ratios for GRID2 cm /GRID3 cm /Patient were 2.8/3.2/5.4, 2.1/1.8/5.4, 2.0/2.2/3.9, 2.1/2.7/5.2 and for the 3DCRT, VMAT, TOMO5 cm , and TOMO2.5 cm plans, respectively. The volume of normal tissue receiving 7.5 Gy was lowest in the TOMO2.5 cm plan (GRID2 cm /GRID3 cm /Patient = 54 cm3 /19 cm3 /10 cm3 ). The VMAT plans had the lowest delivery times (GRID2 cm /GRID3 cm /Patient = 17 min/8 min/9 min). CONCLUSION: Our results present, for the first time, preliminary evidence comparing IMRT-GRID approaches which result in high-dose "islands" within a target, mimicking what is achieved with a conventional GRID block but without high-dose "tail" regions outside of the target. These approaches differ modestly in their ability to achieve high peak-to-edge ratios and also differ in delivery times.


Subject(s)
Neoplasms/radiotherapy , Organs at Risk/radiation effects , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Radiotherapy, Intensity-Modulated/methods , Software , Humans , Radiotherapy Dosage
14.
PLoS One ; 10(1): e0117306, 2015.
Article in English | MEDLINE | ID: mdl-25607927

ABSTRACT

Various therapeutic approaches have been studied for the treatment of Duchenne muscular dystrophy (DMD), but none of these approaches have led to significant long-term effects in patients. One reason for this observed inefficacy may be the use of inappropriate animal models for the testing of therapeutic agents. The mdx mouse is the most widely used murine model of DMD, yet it does not model the fibrotic progression observed in patients. Other murine models of DMD are available that lack one or both alleles of utrophin, a functional analog of dystrophin. The aim of this study was to compare fibrosis and myofiber damage in the mdx, mdx/utrn+/- and double knockout (dko) mouse models. We used Masson's trichrome stain and percentage of centrally-nucleated myofibers as indicators of fibrosis and myofiber regeneration, respectively, to assess disease progression in diaphragm and gastrocnemius muscles harvested from young and aged wild-type, mdx, mdx/utrn+/- and dko mice. Our results indicated that eight week-old gastrocnemius muscles of both mdx/utrn+/- and dko hind limb developed fibrosis whereas age-matched mdx gastrocnemius muscle did not (p = 0.002). The amount of collagen found in the mdx/utrn+/- diaphragm was significantly higher than that found in the corresponding diaphragm muscles of wild-type animals, but not of mdx animals (p = 0.0003). Aged mdx/utrn+/- mice developed fibrosis in both diaphragm and gastrocnemius muscles compared to wild-type controls (p = 0.003). Mdx diaphragm was fibrotic in aged mice as well (p = 0.0235), whereas the gastrocnemius muscle in these animals was not fibrotic. We did not measure a significant difference in collagen staining between wild-type and mdx gastrocnemius muscles. The results of this study support previous reports that the moderately-affected mdx/utrn+/- mouse is a better model of DMD, and we show here that this difference is apparent by 2 months of age.


Subject(s)
Dystrophin/genetics , Fibrosis/pathology , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , Utrophin/genetics , Animals , Collagen/metabolism , Diaphragm/pathology , Disease Models, Animal , Gene Knockout Techniques , Hindlimb/pathology , Mice , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...