Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Am J Physiol Renal Physiol ; 326(5): F751-F767, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38385175

ABSTRACT

Conduit arterial disease in chronic kidney disease (CKD) is an important cause of cardiac complications. Cardiac function in CKD has not been studied in the absence of arterial disease. In an Alport syndrome model bred not to have conduit arterial disease, mice at 225 days of life (dol) had CKD equivalent to humans with CKD stage 4-5. Parathyroid hormone (PTH) and FGF23 levels were one log order elevated, circulating sclerostin was elevated, and renal activin A was strongly induced. Aortic Ca levels were not increased, and vascular smooth muscle cell (VSMC) transdifferentiation was absent. The CKD mice were not hypertensive, and cardiac hypertrophy was absent. Freshly excised cardiac tissue respirometry (Oroboros) showed that ADP-stimulated O2 flux was diminished from 52 to 22 pmol/mg (P = 0.022). RNA-Seq of cardiac tissue from CKD mice revealed significantly decreased levels of cardiac mitochondrial oxidative phosphorylation genes. To examine the effect of activin A signaling, some Alport mice were treated with a monoclonal Ab to activin A or an isotype-matched IgG beginning at 75 days of life until euthanasia. Treatment with the activin A antibody (Ab) did not affect cardiac oxidative phosphorylation. However, the activin A antibody was active in the skeleton, disrupting the effect of CKD to stimulate osteoclast number, eroded surfaces, and the stimulation of osteoclast-driven remodeling. The data reported here show that cardiac mitochondrial respiration is impaired in CKD in the absence of conduit arterial disease. This is the first report of the direct effect of CKD on cardiac respiration.NEW & NOTEWORTHY Heart disease is an important morbidity of chronic kidney disease (CKD). Hypertension, vascular stiffness, and vascular calcification all contribute to cardiac pathophysiology. However, cardiac function in CKD devoid of vascular disease has not been studied. Here, in an animal model of human CKD without conduit arterial disease, we analyze cardiac respiration and discover that CKD directly impairs cardiac mitochondrial function by decreasing oxidative phosphorylation. Protection of cardiac oxidative phosphorylation may be a therapeutic target in CKD.


Subject(s)
Cardiomegaly , Fibroblast Growth Factor-23 , Myocardium , Renal Insufficiency, Chronic , Animals , Fibroblast Growth Factor-23/metabolism , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Cardiomegaly/metabolism , Cardiomegaly/pathology , Myocardium/metabolism , Myocardium/pathology , Disease Models, Animal , Activins/metabolism , Activins/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mice , Male , Oxidative Phosphorylation , Nephritis, Hereditary/metabolism , Nephritis, Hereditary/pathology , Nephritis, Hereditary/genetics , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Parathyroid Hormone/metabolism
3.
Front Physiol ; 14: 1120308, 2023.
Article in English | MEDLINE | ID: mdl-36776982

ABSTRACT

The chronic kidney disease-mineral bone disorder (CKD-MBD) is a complex multi-component syndrome occurring during kidney disease and its progression. Here, we update progress in the components of the syndrome, and synthesize recent investigations, which suggest a potential mechanism of the bone-vascular paradox. The discovery that calcified arteries in chronic kidney disease inhibit bone remodeling lead to the identification of factors produced by the vasculature that inhibit the skeleton, thus providing a potential explanation for the bone-vascular paradox. Among the factors produced by calcifying arteries, sclerostin secretion is especially enlightening. Sclerostin is a potent inhibitor of bone remodeling and an osteocyte specific protein. Its production by the vasculature in chronic kidney disease identifies the key role of vascular cell osteoblastic/osteocytic transdifferentiation in vascular calcification and renal osteodystrophy. Subsequent studies showing that inhibition of sclerostin activity by a monoclonal antibody improved bone remodeling as expected, but stimulated vascular calcification, demonstrate that vascular sclerostin functions to brake the Wnt stimulation of the calcification milieu. Thus, the target of therapy in the chronic kidney disease-mineral bone disorder is not inhibition of sclerostin function, which would intensify vascular calcification. Rather, decreasing sclerostin production by decreasing the vascular osteoblastic/osteocytic transdifferentiation is the goal. This might decrease vascular calcification, decrease vascular stiffness, decrease cardiac hypertrophy, decrease sclerostin production, reduce serum sclerostin and improve skeletal remodeling. Thus, the therapeutic target of the chronic kidney disease-mineral bone disorder may be vascular osteoblastic transdifferentiation, and sclerostin levels may be a useful biomarker for the diagnosis of the chronic kidney disease-mineral bone disorder and the progress of its therapy.

4.
Front Immunol ; 11: 1641, 2020.
Article in English | MEDLINE | ID: mdl-32849562

ABSTRACT

Ascending bacterial pyelonephritis, a form of urinary tract infection (UTI) that can result in hospitalization, sepsis, and other complications, occurs in ~250,000 US patients annually; uropathogenic Escherichia coli (UPEC) cause a large majority of these infections. Although UTIs are primarily a disease of women, acute pyelonephritis in males is associated with increased mortality and morbidity, including renal scarring, and end-stage renal disease. Preclinical models of UTI have only recently allowed investigation of sex and sex-hormone effects on pathogenesis. We previously demonstrated that renal scarring after experimental UPEC pyelonephritis is augmented by androgen exposure; testosterone exposure increases both the severity of pyelonephritis and the degree of renal scarring in both male and female mice. Activin A is an important driver of scarring in non-infectious renal injury, as well as a mediator of macrophage polarization. In this work, we investigated how androgen exposure influences immune cell recruitment to the UPEC-infected kidney and how cell-specific activin A production affects post-pyelonephritic scar formation. Compared with vehicle-treated females, androgenized mice exhibited reduced bacterial clearance from the kidney, despite robust myeloid cell recruitment that continued to increase as infection progressed. Infected kidneys from androgenized mice harbored more alternatively activated (M2) macrophages than vehicle-treated mice, reflecting an earlier shift from a pro-inflammatory (M1) phenotype. Androgen exposure also led to a sharp increase in activin A-producing myeloid cells in the infected kidney, as well as decreased levels of follistatin (which normally antagonizes activin action). As a result, infection in androgenized mice featured prolonged polarization of macrophages toward a pro-fibrotic M2a phenotype, accompanied by an increase in M2a-associated cytokines. These data indicate that androgen enhancement of UTI severity and resulting scar formation is related to augmented local activin A production and corresponding promotion of M2a macrophage polarization.


Subject(s)
Activins/metabolism , Androgens/toxicity , Escherichia coli Infections/metabolism , Kidney/drug effects , Macrophages/drug effects , Pyelonephritis/metabolism , Testosterone/analogs & derivatives , Urinary Tract Infections/metabolism , Animals , Bacterial Load , Cytokines/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Female , Fibrosis , Host-Pathogen Interactions , Inflammation Mediators/metabolism , Kidney/metabolism , Kidney/microbiology , Kidney/pathology , Macrophages/metabolism , Macrophages/microbiology , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Pyelonephritis/microbiology , Pyelonephritis/pathology , Testosterone/toxicity , Urinary Tract Infections/microbiology , Urinary Tract Infections/pathology , Uropathogenic Escherichia coli/pathogenicity
5.
Kidney Int ; 95(2): 261-263, 2019 02.
Article in English | MEDLINE | ID: mdl-30665565

ABSTRACT

In an ancillary analysis of cross-sectional observational studies of bone health in end-stage kidney disease (ESKD), Evenepoel et al. reported that subjects with autosomal-dominant polycystic kidney disease (ADPKD) had a unique phenotype in their renal osteodystrophy. ADPKD caused resistance to parathyroid hormone (PTH) producing lower turnover states and preservation of cortical bone mineral density. PTH resistance was probably produced by increased osteocyte sclerostin levels, which is regulated by mechanical loading sensed through primary cilia sensory function affected by mutation in PKD1 and PKD2.


Subject(s)
Chronic Kidney Disease-Mineral and Bone Disorder , Kidney Failure, Chronic , Polycystic Kidney, Autosomal Dominant , Cross-Sectional Studies , Humans , Mutation , Phenotype , TRPP Cation Channels/genetics
6.
Kidney Int Rep ; 4(11): 1585-1597, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31891000

ABSTRACT

INTRODUCTION: Patients with end-stage kidney disease (ESKD) exhibit anemia, chronic kidney disease‒mineral bone disorder (CKD-MBD), and cardiovascular disease. The REN-001 and REN-002 phase II, multicenter, randomized studies examined safety, tolerability, and effects of sotatercept, an ActRIIA-IgG1 fusion protein trap, on hemoglobin concentration; REN-001 also explored effects on bone mineral density (BMD) and abdominal aortic vascular calcification. METHODS: Forty-three patients were treated in REN-001 (dose range: sotatercept 0.3‒0.7 mg/kg or placebo subcutaneously [s.c.] for 200 days) and 50 in REN-002 (dose range: 0.1‒0.4 mg/kg i.v. and 0.13‒0.5 mg/kg s.c. for 99 days). RESULTS: In REN-001, frequency of achieving target hemoglobin response (>10 g/dl [6.21 mmol/l]) with sotatercept was dose-related and greater than placebo (0.3 mg/kg: 33.3%; 0.5 mg/kg: 62.5%; 0.7 mg/kg: 77.8%; 0.7 mg/kg [doses 1 and 2]/0.4 mg/kg [doses 3‒15]: 33.3%; placebo: 27.3%). REN-002 hemoglobin findings were similar (i.v.: 16.7%-57.1%; s.c.: 11.1%‒42.9%). Dose-related achievement of ≥2% increase in femoral neck cortical BMD was seen among only REN-001 patients receiving sotatercept (0.3‒0.7 mg/kg: 20.0%‒57.1%; placebo: 0.0%). Abdominal aortic vascular calcification was slowed in a dose-related manner, with a ≤15% increase in Agatston score achieved by more REN-001 sotatercept versus placebo patients (60%‒100% vs. 16.7%). The most common adverse events during treatment were hypertension, muscle spasm, headache, arteriovenous fistula site complication, and influenza observed in both treatment and placebo groups. CONCLUSION: In patients with ESKD, sotatercept exhibited a favorable safety profile and was associated with trends in dose-related slowing of vascular calcification. Less-consistent trends in improved hemoglobin concentration and BMD were observed.

8.
Kidney Int ; 94(3): 502-513, 2018 09.
Article in English | MEDLINE | ID: mdl-30041870

ABSTRACT

Females across their lifespan and certain male populations are susceptible to urinary tract infections (UTI). The influence of female vs. male sex on UTI is incompletely understood, in part because preclinical modeling has been performed almost exclusively in female mice. Here, we employed established and new mouse models of UTI with uropathogenic Escherichia coli (UPEC) to investigate androgen influence on UTI pathogenesis. Susceptibility to UPEC UTI in both male and female hosts was potentiated with 5α-dihydrotestosterone, while males with androgen receptor deficiency and androgenized females treated with the androgen receptor antagonist enzalutamide were protected from severe pyelonephritis. In androgenized females and in males, UPEC formed dense intratubular, biofilm-like communities, some of which were sheltered from infiltrating leukocytes by the tubular epithelium and by peritubular fibrosis. Abscesses were nucleated by small intratubular collections of UPEC first visualized at five days postinfection and briskly expanded over the subsequent 24 hours. Male mice deficient in Toll-like receptor 4, which fail to contain UPEC within abscesses, were susceptible to lethal dissemination. Thus, androgen receptor activation imparts susceptibility to severe upper-tract UTI in both female and male murine hosts. Visualization of intratubular UPEC communities illuminates early renal abscess pathogenesis and the role of abscess formation in preventing dissemination of infection. Additionally, our study suggests that androgen modulation may represent a novel therapeutic route to combat recalcitrant or recurrent UTI in a range of patient populations.


Subject(s)
Abscess/pathology , Androgen Receptor Antagonists/pharmacology , Androgens/pharmacology , Kidney Tubules/pathology , Pyelonephritis/pathology , Receptors, Androgen/metabolism , Abscess/microbiology , Androgen Receptor Antagonists/therapeutic use , Animals , Benzamides , Dihydrotestosterone/pharmacology , Disease Models, Animal , Disease Susceptibility/microbiology , Disease Susceptibility/pathology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Female , Humans , Kidney Tubules/drug effects , Kidney Tubules/microbiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nitriles , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/therapeutic use , Pyelonephritis/drug therapy , Pyelonephritis/microbiology , Sex Factors , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Treatment Outcome , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology , Urinary Tract Infections/pathology , Uropathogenic Escherichia coli/pathogenicity
9.
Kidney Int ; 93(1): 147-158, 2018 01.
Article in English | MEDLINE | ID: mdl-28843411

ABSTRACT

We examined activin receptor type IIA (ActRIIA) activation in chronic kidney disease (CKD) by signal analysis and inhibition in mice with Alport syndrome using the ActRIIA ligand trap RAP-011 initiated in 75-day-old Alport mice. At 200 days of age, there was severe CKD and associated Mineral and Bone Disorder (CKD-MBD), consisting of osteodystrophy, vascular calcification, cardiac hypertrophy, hyperphosphatemia, hyperparathyroidism, elevated FGF23, and reduced klotho. The CKD-induced bone resorption and osteoblast dysfunction was reversed, and bone formation was increased by RAP-011. ActRIIA inhibition prevented the formation of calcium apatite deposits in the aortic adventitia and tunica media and significantly decreased the mean aortic calcium concentration from 0.59 in untreated to 0.36 mg/g in treated Alport mice. Aortic ActRIIA stimulation in untreated mice increased p-Smad2 levels and the transcription of sm22α and αSMA. ActRIIA inhibition reversed aortic expression of the osteoblast transition markers Runx2 and osterix. Heart weight was significantly increased by 26% in untreated mice but remained normal during RAP-011 treatment. In 150-day-old mice, GFR was significantly reduced by 55%, but only by 30% in the RAP-011-treated group. In 200-day-old mice, the mean BUN was 100 mg/dl in untreated mice compared to 60 mg/dl in the treated group. In the kidneys of 200-day-old mice, ActRIIA and p-Smad2 were induced and MCP-1, fibronectin, and interstitial fibrosis were stimulated; all were attenuated by RAP-011 treatment. Hence, the activation of ActRIIA signaling during early CKD contributes to the CKD-MBD components of osteodystrophy and cardiovascular disease and to renal fibrosis. Thus, the inhibition of ActRIIA signaling is efficacious in improving and delaying CKD-MBD in this model of Alport syndrome.


Subject(s)
Activin Receptors, Type II/metabolism , Bone Resorption/metabolism , Cardiomegaly/metabolism , Chronic Kidney Disease-Mineral and Bone Disorder/metabolism , Nephritis, Hereditary/metabolism , Renal Insufficiency, Chronic/metabolism , Vascular Calcification/metabolism , Actins/metabolism , Activin Receptors, Type II/antagonists & inhibitors , Activin Receptors, Type II/genetics , Animals , Blood Vessels/metabolism , Blood Vessels/pathology , Blood Vessels/physiopathology , Bone Remodeling , Bone Resorption/genetics , Bone Resorption/physiopathology , Bone Resorption/prevention & control , Bone and Bones/metabolism , Bone and Bones/pathology , Bone and Bones/physiopathology , Cardiomegaly/genetics , Cardiomegaly/physiopathology , Cardiomegaly/prevention & control , Chronic Kidney Disease-Mineral and Bone Disorder/genetics , Chronic Kidney Disease-Mineral and Bone Disorder/physiopathology , Chronic Kidney Disease-Mineral and Bone Disorder/prevention & control , Collagen Type IV/deficiency , Collagen Type IV/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Disease Models, Animal , Fibroblast Growth Factor-23 , Fibrosis , Glomerular Filtration Rate , Kidney/metabolism , Kidney/pathology , Kidney/physiopathology , Mice, Knockout , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Myocardium/metabolism , Myocardium/pathology , Nephritis, Hereditary/drug therapy , Nephritis, Hereditary/genetics , Nephritis, Hereditary/physiopathology , Phosphorylation , Recombinant Fusion Proteins/pharmacology , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/prevention & control , Signal Transduction , Smad2 Protein/metabolism , Sp7 Transcription Factor/metabolism , Vascular Calcification/genetics , Vascular Calcification/physiopathology , Vascular Calcification/prevention & control , Vascular Remodeling
10.
Dis Model Mech ; 10(11): 1371-1379, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28882930

ABSTRACT

We present a new preclinical model to study treatment, resolution and sequelae of severe ascending pyelonephritis. Urinary tract infection (UTI), primarily caused by uropathogenic Escherichia coli (UPEC), is a common disease in children. Severe pyelonephritis is the primary cause of acquired renal scarring in childhood, which may eventually lead to hypertension and chronic kidney disease in a small but important fraction of patients. Preclinical modeling of UTI utilizes almost exclusively females, which (in most mouse strains) exhibit inherent resistance to severe ascending kidney infection; consequently, no existing preclinical model has assessed the consequences of recovery from pyelonephritis following antibiotic treatment. We recently published a novel mini-surgical bladder inoculation technique, with which male C3H/HeN mice develop robust ascending pyelonephritis, highly prevalent renal abscesses and evidence of fibrosis. Here, we devised and optimized an antibiotic treatment strategy within this male model to more closely reflect the clinical course of pyelonephritis. A 5-day ceftriaxone regimen initiated at the onset of abscess development achieved resolution of bladder and kidney infection. A minority of treated mice displayed persistent histological abscess at the end of treatment, despite microbiological cure of pyelonephritis; a matching fraction of mice 1 month later exhibited renal scars featuring fibrosis and ongoing inflammatory infiltrates. Successful antibiotic treatment preserved renal function in almost all infected mice, as assessed by biochemical markers 1 and 5 months post-treatment; hydronephrosis was observed as a late effect of treated pyelonephritis. An occasional mouse developed chronic kidney disease, generally reflecting the incidence of this late sequela in humans. In total, this model offers a platform to study the molecular pathogenesis of pyelonephritis, response to antibiotic therapy and emergence of sequelae, including fibrosis and renal scarring. Future studies in this system may inform adjunctive therapies that may reduce the long-term complications of this very common bacterial infection.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Cicatrix/drug therapy , Kidney Function Tests , Kidney/pathology , Kidney/physiopathology , Pyelonephritis/drug therapy , Abscess/complications , Abscess/drug therapy , Abscess/pathology , Animals , Anti-Bacterial Agents/pharmacology , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use , Cicatrix/complications , Cicatrix/pathology , Cicatrix/physiopathology , Humans , Hydronephrosis/complications , Hydronephrosis/drug therapy , Inflammation/complications , Inflammation/drug therapy , Inflammation/pathology , Kidney/drug effects , Male , Mice, Inbred C3H , Pyelonephritis/complications , Pyelonephritis/microbiology , Pyelonephritis/pathology , Treatment Outcome
12.
Bone ; 100: 80-86, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28119179

ABSTRACT

The causes of excess cardiovascular mortality associated with chronic kidney disease (CKD) have been attributed in part to the CKD-mineral bone disorder syndrome (CKD-MBD), wherein, novel cardiovascular risk factors have been identified. New advances in the causes of the CKD-MBD are discussed in this review. They demonstrate that repair and disease processes in the kidneys release factors to the circulation that cause the systemic complications of CKD. The discovery of WNT inhibitors, especially Dickkopf 1 (Dkk1), produced during renal repair as participating in the pathogenesis of the vascular and skeletal components of the CKD-MBD implied that additional pathogenic factors are critical. This lead to the discovery that activin A is a second renal repair factor circulating in increased levels during CKD. Activin A derives from peritubular myofibroblasts of diseased kidneys, wherein it stimulates fibrosis, and decreases tubular klotho expression. Activin A binds to the type 2 activin A receptor, ActRIIA, which is variably affected by CKD in the vasculature. In diabetic/atherosclerotic aortas, specifically in vascular smooth muscle cells (VSMC), ActRIIA signaling is inhibited and contributes to CKD induced VSMC dedifferentiation, osteogenic transition and neointimal atherosclerotic calcification. In nondiabetic/nonatherosclerotic aortas, CKD increases VSMC ActRIIA signaling, and vascular fibroblast signaling causing the latter to undergo osteogenic transition and stimulate vascular calcification. In both vascular situations, a ligand trap for ActRIIA prevented vascular calcification. In the skeleton, activin A is responsible for CKD stimulation of osteoclastogenesis and bone remodeling increasing bone turnover. These studies demonstrate that circulating renal repair and injury factors are causal of the CKD-MBD and CKD associated cardiovascular disease.


Subject(s)
Cardiovascular Diseases/metabolism , Renal Insufficiency, Chronic/metabolism , Animals , Cardiovascular Diseases/genetics , Chronic Kidney Disease-Mineral and Bone Disorder , Fibroblast Growth Factor-23 , Humans , Muscle, Smooth, Vascular/metabolism , Parathyroid Hormone/metabolism , Renal Insufficiency, Chronic/genetics , Risk Factors
13.
Kidney Int ; 91(1): 86-95, 2017 01.
Article in English | MEDLINE | ID: mdl-27666759

ABSTRACT

Dysregulation of skeletal remodeling is a component of renal osteodystrophy. Previously, we showed that activin receptor signaling is differentially affected in various tissues in chronic kidney disease (CKD). We tested whether a ligand trap for the activin receptor type 2A (RAP-011) is an effective treatment of the osteodystrophy of the CKD-mineral bone disorder. With a 70% reduction in the glomerular filtration rate, CKD was induced at 14 weeks of age in the ldlr-/- high fat-fed mouse model of atherosclerotic vascular calcification and diabetes. Twenty mice with CKD, hyperphosphatemia, hyperparathyroidism, and elevated activin A were treated with RAP-011, wherease 19 mice were given vehicle twice weekly from week 22 until the mice were killed at 28 weeks of age. The animals were then evaluated by skeletal histomorphometry, micro-computed tomography, mechanical strength testing, and ex vivo bone cell culture. Results in the CKD groups were compared with those of the 16 sham-operated ldlr-/- high fat-fed mice. Sham-operated mice had low-turnover osteodystrophy and skeletal frailty. CKD stimulated bone remodeling with significant increases in osteoclast and osteoblast numbers and bone resorption. Compared with mice with CKD and sham-operated mice, RAP-011 treatment eliminated the CKD-induced increase in these histomorphometric parameters and increased trabecular bone fraction. RAP-011 significantly increased cortical bone area and thickness. Activin A-enhanced osteoclastogenesis was mediated through p-Smad2 association with c-fos and activation of nuclear factor of activated T cells c1 (NFATc1). Thus, an ActRIIA ligand trap reversed CKD-stimulated bone remodeling, likely through inhibition of activin-A induced osteoclastogenesis.


Subject(s)
Activins/metabolism , Bone Remodeling/drug effects , Chronic Kidney Disease-Mineral and Bone Disorder/drug therapy , Diabetes Mellitus, Experimental/complications , Osteoclasts/drug effects , Recombinant Fusion Proteins/therapeutic use , Renal Insufficiency, Chronic/complications , Animals , Cells, Cultured , Chronic Kidney Disease-Mineral and Bone Disorder/etiology , Disease Models, Animal , Glomerular Filtration Rate , Hyperphosphatemia/etiology , Male , Mice , Mice, Knockout , Osteoblasts/drug effects , Receptors, LDL/genetics , Vascular Calcification/etiology , X-Ray Microtomography
14.
J Clin Endocrinol Metab ; 101(11): 4135-4141, 2016 11.
Article in English | MEDLINE | ID: mdl-27552541

ABSTRACT

CONTEXT: Relative to European Americans, calcified atherosclerotic plaque (CP) is less prevalent and severe in African-Americans (AAs). OBJECTIVE: Predictors of progression of CP in the aorta, carotid, and coronary arteries were examined in AAs over a mean 5.3 ± 1.4-year interval. DESIGN: This is the African American-Diabetes Heart Study. SETTING: A type 2 diabetes (T2D)-affected cohort was included. PARTICIPANTS: A total of 300 unrelated AAs with T2D; 50% female, mean age 55 ± 9 years, baseline hemoglobin A1c 8.1 ± 1.8% was included. MAIN OUTCOME MEASURES: Glycemic control, renal parameters, vitamin D, and computed tomography-derived measures of adiposity, vascular CP, and volumetric bone mineral density (vBMD) in lumbar and thoracic vertebrae were obtained at baseline and follow-up. RESULTS: CP increased in incidence and quantity/mass in all three vascular beds over the 5-year study (P < .0001). Lower baseline lumbar and thoracic vBMD were associated with progression of abdominal aorta CP (P < .008), but not progression of carotid or coronary artery CP. Lower baseline estimated glomerular filtration rate was associated with progression of carotid artery CP (P = .0004), and higher baseline pericardial adipose volume was associated with progression of coronary artery (P = .001) and aorta (P = .0006) CP independent of body mass index. There was a trend for an inverse relationship between change in thoracic vBMD and change in aortic CP (P = .05). CONCLUSIONS: In this longitudinal study, lower baseline thoracic and lumbar vBMD and estimated glomerular filtration rate and higher pericardial adipose volumes were associated with increases in CP in AAs with T2D. Changes in these variables and baseline levels and/or changes in glycemic control, albuminuria, and vitamin D were not significantly associated with progression of CP.


Subject(s)
Adipose Tissue/diagnostic imaging , Aortic Diseases/ethnology , Atherosclerosis/ethnology , Black or African American/ethnology , Bone Density , Carotid Artery Diseases/ethnology , Coronary Vessels/diagnostic imaging , Diabetes Mellitus, Type 2/ethnology , Disease Progression , Plaque, Atherosclerotic/ethnology , Aortic Diseases/diagnostic imaging , Aortic Diseases/metabolism , Atherosclerosis/diagnostic imaging , Atherosclerosis/metabolism , Calcinosis/diagnostic imaging , Calcinosis/ethnology , Calcinosis/metabolism , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/metabolism , Comorbidity , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Male , Middle Aged , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/metabolism
15.
Kidney Int ; 89(6): 1231-43, 2016 06.
Article in English | MEDLINE | ID: mdl-27165838

ABSTRACT

The causes of cardiovascular mortality associated with chronic kidney disease (CKD) are partly attributed to the CKD-mineral bone disorder (CKD-MBD). The causes of the early CKD-MBD are not well known. Our discovery of Wnt (portmanteau of wingless and int) inhibitors, especially Dickkopf 1, produced during renal repair as participating in the pathogenesis of the vascular and skeletal components of the CKD-MBD implied that additional pathogenic factors are critical. In the search for such factors, we studied the effects of activin receptor type IIA (ActRIIA) signaling by using a ligand trap for the receptor, RAP-011 (a soluble extracellular domain of ActRIIA fused to a murine IgG-Fc fragment). In a mouse model of CKD that stimulated atherosclerotic calcification, RAP-011 significantly increased aortic ActRIIA signaling assessed by the levels of phosphorylated Smad2/3. Furthermore, RAP-011 treatment significantly reversed CKD-induced vascular smooth muscle dedifferentiation as assessed by smooth muscle 22α levels, osteoblastic transition, and neointimal plaque calcification. In the diseased kidneys, RAP-011 significantly stimulated αklotho levels and it inhibited ActRIIA signaling and decreased renal fibrosis and proteinuria. RAP-011 treatment significantly decreased both renal and circulating Dickkopf 1 levels, showing that Wnt activation was downstream of ActRIIA. Thus, ActRIIA signaling in CKD contributes to the CKD-MBD and renal fibrosis. ActRIIA signaling may be a potential therapeutic target in CKD.


Subject(s)
Activin Receptors, Type II/metabolism , Atherosclerosis/prevention & control , Chronic Kidney Disease-Mineral and Bone Disorder/drug therapy , Protective Agents/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Vascular Calcification/prevention & control , Animals , Aorta/metabolism , Atherosclerosis/blood , Chronic Kidney Disease-Mineral and Bone Disorder/blood , Chronic Kidney Disease-Mineral and Bone Disorder/metabolism , Disease Models, Animal , Fibrosis , Glucuronidase , Humans , Injections, Subcutaneous , Intercellular Signaling Peptides and Proteins/blood , Kidney/pathology , Klotho Proteins , Male , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Phosphorylation , Protective Agents/administration & dosage , Proteinuria , Receptors, Cell Surface/metabolism , Recombinant Fusion Proteins/administration & dosage , Signal Transduction , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Vascular Calcification/blood
16.
Pediatr Transplant ; 20(3): 378-87, 2016 May.
Article in English | MEDLINE | ID: mdl-26880121

ABSTRACT

The chronic kidney disease-mineral bone disorder (CKD-MBD) produces fibroblast growth factor-23 (FGF-23) and related circulating pathogenic factors that are strongly associated with vascular injury and declining kidney function in native CKD. Similarly, chronic renal allograft injury (CRAI) is characterized by vascular injury and declining allograft function in transplant CKD. We hypothesized that circulating CKD-MBD factors could serve as non-invasive biomarkers of CRAI. We conducted a cross-sectional, multicenter case-control study. Cases (n = 31) had transplant function >20 mL/min/1.73 m(2) and biopsy-proven CRAI. Controls (n = 31) had transplant function >90 mL/min/1.73 m(2) and/or a biopsy with no detectable abnormality in the previous six months. We measured plasma CKD-MBD factors at a single time point using ELISA. Median (range) FGF23 levels were over twofold higher in CRAI vs. controls [106 (10-475) pg/mL vs. 45 (8-91) pg/mL; p < 0.001]. FGF23 levels were inversely correlated with transplant function (r(2) = -0.617, p < 0.001). Higher FGF23 levels were associated with increased odds of biopsy-proven CRAI after adjusting for transplant function, clinical, and demographic factors [OR (95% CI) 1.43 (1.23, 1.67)]. Relationships between additional CKD-MBD factors and CRAI were attenuated in multivariable models. Higher FGF23 levels were independently associated with biopsy-proven CRAI in children.


Subject(s)
Fibroblast Growth Factors/blood , Kidney Failure, Chronic/surgery , Kidney Transplantation/adverse effects , Kidney Transplantation/methods , Nephrology/methods , Adolescent , Allografts , Biomarkers/blood , Biopsy , Case-Control Studies , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay , Female , Fibroblast Growth Factor-23 , Glomerular Filtration Rate , Humans , Male , Multivariate Analysis , Regression Analysis , Sensitivity and Specificity , Treatment Outcome , Young Adult
17.
J Am Soc Nephrol ; 27(6): 1625-34, 2016 06.
Article in English | MEDLINE | ID: mdl-26449605

ABSTRACT

Urinary tract infections (UTIs) occur predominantly in females but also affect substantial male patient populations; indeed, morbidity in complicated UTI is higher in males. Because of technical obstacles, preclinical modeling of UTI in male mice has been limited. We devised a minimally invasive surgical bladder inoculation technique that yields reproducible upper and lower UTI in both male and female mice, enabling studies of sex differences in these infections. Acute uropathogenic Escherichia coli (UPEC) cystitis in C57BL/6 and C3H/HeN males recapitulated the intracellular bacterial community pathway previously shown in females. However, surgically infected females of these strains exhibited more robust bladder cytokine responses and more efficient UPEC control than males. Compared with females, C3H/HeN males displayed a striking predilection for chronic cystitis, manifesting as persistent bacteriuria, high-titer bladder bacterial burdens, and chronic inflammation. Furthermore, males developed more severe pyelonephritis and 100% penetrant renal abscess (a complication that is rare in female mice). These phenotypes were sharply abrogated after castration but restored with exogenous testosterone, suggesting that male susceptibility to UTI is strongly influenced by androgen exposure. These data substantiate the long-standing presumption that anatomic differences in urogenital anatomy confer protection from UTI in males; however, as clinically observed, male sex associated with more severe UTI once these traditional anatomic barriers were bypassed. This study introduces a highly tractable preclinical model for interrogating sex differences in UTI susceptibility and pathogenesis, and illuminates an interplay between host sex and UTI that is more complex than previously appreciated.


Subject(s)
Androgens/physiology , Cystitis/etiology , Escherichia coli Infections/etiology , Urinary Tract Infections/etiology , Uropathogenic Escherichia coli , Animals , Cystitis/microbiology , Disease Models, Animal , Disease Susceptibility , Female , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Severity of Illness Index , Sex Factors
18.
Transplantation ; 100(3): 497-505, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26356179

ABSTRACT

The last 25 years have been characterized by dramatic improvements in short-term patient and allograft survival after kidney transplantation. Long-term patient and allograft survival remains limited by cardiovascular disease and chronic allograft injury, among other factors. Cardiovascular disease remains a significant contributor to mortality in native chronic kidney disease as well as cardiovascular mortality in chronic kidney disease more than doubles that of the general population. The chronic kidney disease (CKD)-mineral bone disorder (MBD) is a syndrome recently coined to embody the biochemical, skeletal, and cardiovascular pathophysiology that results from disrupting the complex systems biology between the kidney, skeleton, and cardiovascular system in native and transplant kidney disease. The CKD-MBD is a unique kidney disease-specific syndrome containing novel cardiovascular risk factors, with an impact reaching far beyond traditional notions of renal osteodystrophy and hyperparathyroidism. This overview reviews current knowledge of the pathophysiology of the CKD-MBD, including emerging concepts surrounding the importance of circulating pathogenic factors released from the injured kidney that directly cause cardiovascular disease in native and transplant chronic kidney disease, with potential application to mechanisms of chronic allograft injury and vasculopathy.


Subject(s)
Bone Diseases, Metabolic/etiology , Cardiovascular Diseases/etiology , Kidney Transplantation , Kidney/metabolism , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/surgery , Biomarkers/blood , Bone Diseases, Metabolic/blood , Bone Diseases, Metabolic/diagnosis , Bone Diseases, Metabolic/mortality , Cardiovascular Diseases/blood , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/mortality , Graft Survival , Humans , Kidney Transplantation/adverse effects , Kidney Transplantation/mortality , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/mortality , Risk Factors , Signal Transduction , Treatment Outcome
19.
Am J Nephrol ; 42(6): 391-401, 2015.
Article in English | MEDLINE | ID: mdl-26693712

ABSTRACT

BACKGROUND: Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone implicated in disorders of serum phosphorus concentration and vitamin D. The role of FGF23 in vascular calcification remains controversial. METHODS: Relationships between FGF23 and coronary artery calcified atherosclerotic plaque (CAC), aortoiliac calcified plaque (CP), carotid artery CP, volumetric bone mineral density (vBMD), albuminuria, and estimated glomerular filtration rate (eGFR) were determined in 545 African Americans with type 2 diabetes (T2D) and preserved kidney function in African American-Diabetes Heart Study participants. Generalized linear models were fitted to test associations between FGF23 and cardiovascular, bone, and renal phenotypes, and change in measurements over time, adjusting for age, gender, African ancestry proportion, body mass index, diabetes duration, hemoglobin A1c, blood pressure, renin-angiotensin-system inhibitors, statins, calcium supplements, serum calcium, and serum phosphate. RESULTS: The sample was 56.7% female with a mean (SD) age of 55.6 (9.6) years, diabetes duration of 10.3 (8.2) years, eGFR 90.9 (22.1) ml/min/1.73 m2, urine albumin:creatinine ratio (UACR) 151 (588) (median 13) mg/g, plasma FGF23 161 (157) RU/ml, and CAC 637 (1,179) mg. In fully adjusted models, FGF23 was negatively associated with eGFR (p < 0.0001) and positively associated with UACR (p < 0.0001) and CAC (p = 0.0006), but not with carotid CP or aortic CP. Baseline FGF23 concentration did not associate with changes in vBMD or CAC after a mean of 5.1 years follow-up. CONCLUSIONS: Plasma FGF23 concentrations were independently associated with subclinical coronary artery disease, albuminuria, and kidney function in the understudied African American population with T2D. Findings support relationships between FGF23 and vascular calcification, but not between FGF23 and bone mineral density, in African Americans lacking advanced nephropathy.


Subject(s)
Diabetes Mellitus, Type 2/blood , Fibroblast Growth Factors/blood , Plaque, Atherosclerotic/blood , Adult , Black or African American , Aged , Albuminuria/blood , Albuminuria/complications , Blood Pressure , Bone Density , Carotid Arteries/physiopathology , Coronary Vessels/physiopathology , Cross-Sectional Studies , Diabetes Mellitus, Type 2/ethnology , Female , Fibroblast Growth Factor-23 , Follow-Up Studies , Glomerular Filtration Rate , Glycated Hemoglobin/analysis , Humans , Iliac Artery/physiopathology , Kidney Function Tests , Male , Middle Aged , Phosphates/chemistry , Plaque, Atherosclerotic/ethnology , Renin-Angiotensin System , Risk Factors , Tomography, X-Ray Computed , Vitamin D/blood
20.
Bone ; 81: 168-177, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26189760

ABSTRACT

Deficiency of Sirtuin 6 (SIRT6), a chromatin-related deacetylase, in mice reveals severe premature aging phenotypes including osteopenia. However, the underlying molecular mechanisms of SIRT6 in bone metabolism are unknown. Here we show that SIRT6 deficiency in mice produces low-turnover osteopenia caused by impaired bone formation and bone resorption, which are mechanisms similar to those of age-related bone loss. Mechanistically, SIRT6 interacts with runt-related transcription factor 2 (Runx2) and osterix (Osx), which are the two key transcriptional regulators of osteoblastogenesis, and deacetylates histone H3 at Lysine 9 (H3K9) at their promoters. Hence, excessively elevated Runx2 and Osx in SIRT6(-/-) osteoblasts lead to impaired osteoblastogenesis. In addition, SIRT6 deficiency produces hyperacetylation of H3K9 in the promoter of dickkopf-related protein 1 (Dkk1), a potent negative regulator of osteoblastogenesis, and osteoprotegerin, an inhibitor of osteoclastogenesis. Therefore, the resulting up-regulation of Dkk1 and osteoprotegerin levels contribute to impaired bone remodeling, leading to osteopenia with a low bone turnover in SIRT6-deficient mice. These results establish a new link between SIRT6 and bone remodeling that positively regulates osteoblastogenesis and osteoclastogenesis.


Subject(s)
Bone Diseases, Metabolic/metabolism , Bone Diseases, Metabolic/pathology , Bone Remodeling/physiology , Sirtuins/deficiency , Animals , Cells, Cultured , Male , Mice , Mice, 129 Strain , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...