Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 318: 137897, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36657580

ABSTRACT

The high hydrophobicity of n-hexane is the main reason why it is difficult to be removed biologically. In this study, the effects of bamboo-charcoal modified by bimetallic Fe/Pd (BBC) on n-hexane biodegradation by Pseudomonas mendocina NX-1 (PM) was investigated. The n-hexane removal efficiency was increased in the presence of BC. The highest n-hexane removal efficiency at 90.0% was achieved at 0.05 g L-1 BCE and 3 g L-1 NH4+ under pH 7.7 and 35 °C. Additionally, protein content (45.9 µg mL-1) and negative cell surface zeta potential (-26.4 mV) were increased during biodegradation process, with PM-BBC being 43.1 µg mL-1 and 19.1 mV. Bacterial growth was improved and maximum cell surface hydrophobicity was obtained after 20 h, which was 59.4% higher than the control with PM-BBC (37.7%) or PM (16.1%), showing biodegradation products of 1-butanol and acetic acid. The results indicate that BBC improved n-hexane biodegradation efficiency by promoting bacterial growth, reducing cell zeta potential, exposing hydrophobic proteins, and increasing cell surface hydrophobicity of bacterial strain NX-1. This investigation suggests that BBC-enhanced biodegradation can be promising to treat n-hexane-containing gas.


Subject(s)
Pseudomonas mendocina , Pseudomonas mendocina/metabolism , Charcoal/pharmacology , Charcoal/metabolism , Biodegradation, Environmental , Hexanes/metabolism
2.
RSC Adv ; 12(5): 2549-2557, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35425296

ABSTRACT

Nitrous oxide reductase (N2OR) is the only known enzyme that can reduce the powerful greenhouse gas nitrous oxide (N2O) to harmless nitrogen at the final step of bacterial denitrification. To alleviate the N2O emission, emerging approaches aim at microbiome biotechnology. In this study, the genome sequence of facultative anaerobic bacteria Pseudomonas citronellolis WXP-4, which efficiently degrades N2O, was obtained by de novo sequencing for the first time, and then, four key reductase structure coding genes related to complete denitrification were identified. The single structural encoding gene nosZ with a length of 1914 bp from strain WXP-4 was cloned in Escherichia coli BL21(DE3), and the N2OR protein (76 kDa) was relatively highly efficiently expressed under the optimal inducing conditions of 1.0 mM IPTG, 5 h, and 30 °C. Denitrification experiment results confirmed that recombinant E. coli had strong denitrification ability and reduced 10 mg L-1 of N2O to N2 within 15 h under the optimal conditions of pH 7.0 and 40 °C, its corresponding N2O reduction rate was almost 2.3 times that of Alcaligenes denitrificans strain TB, but only 80% of that of wild strain WXP-4, meaning that nos gene cluster auxiliary gene deletion decreased the activity of N2OR. The 3D structure of N2OR predicted on the basis of sequence homology found that electron transfer center CuA had only five amino acid ligands, and the S2 of the catalytically active center CuZ only bound one CuI atom. The unique 3D structure was different from previous reports and may be closely related to the strong N2O reduction ability of strain WXP-4 and recombinant E. coli. The findings show a potential application of recombinant E. coli in alleviating the greenhouse effect and provide a new perspective for researching the relationship between structure and function of N2OR.

3.
Sci Total Environ ; 754: 142109, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32898784

ABSTRACT

The fungus Penicillium citrinum WXP-2 and the bacterium Citrobacter freundii WXP-9 were isolated and found to have poor denitrification performance. Surprisingly, co-culture of the two strains which formed fungus-bacterium pellets (FBPs) promoted the removal efficiency of nitrate (NO3--N; 95.78%) and total nitrogen (TN; 81.73%). Nitrogen balance analysis showed that excess degraded NO3--N was primarily converted to N2 (77.53%). Moreover, co-culture increased the dry weight to 0.74 g/L. The diameter of pellets and cell viability also increased by 1.49 and 1.78 times, respectively, indicating that the co-culture exerted a synergistic effect to promote growth. The increase in electron-transmission system activity [99.01 mg iodonitrotetrazolium formazan/(g·L)] and nitrate reductase activity [8.65 mg N/(min·mg protein)] were responsible for denitrification promotion. The FBPs also exhibited the highest degradation rate at 2:1 inoculation ratio and 36 h delayed inoculation of strain WXP-9. Finally, recycling experiments of FBP demonstrated that the high steady TN removal rate could be maintained for five cycles.


Subject(s)
Denitrification , Nitrogen , Bioreactors , Coculture Techniques , Electrons , Fungi , Nitrates
4.
Sci Total Environ ; 708: 135063, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31810663

ABSTRACT

The microbial reduction of nitrate in the presence of nanoscale zero-valent iron (nZVI) was evaluated to assess the feasibility of employing nZVI for biological denitrification treatment. The effect of modified nZVI on the growth, metabolism, and denitrification performance of Alcaligenes sp. TB under aerobic conditions was studied. Results showed that Alcaligenes sp. TB with nZVI/Pd had 31.5% increase in nitrate removal and 18.1% decrease in nitrite accumulation within 28 h. nZVI/Pd exhibited less inhibition on the cell growth (OD600 = 0.725), NADH/NAD+ ratio (86% of control), and electron transfer system activity (68.5% of control). In addition, nZVI/Pd decreased the membrane fluidity by increasing the trans/cis isomerization ratio (317.7% of control) to enhance the resistance of nZVI. This study underlines the effects of nZVI/Pd on membrane susceptibility via membrane fatty acid transformation during denitrification and suggests the influence of engineered nanomaterials on denitrification.


Subject(s)
Alcaligenes , Denitrification , Iron , Nitrates , Nitrites
5.
Ecotoxicol Environ Saf ; 183: 109507, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31386942

ABSTRACT

Multi-walled carbon nanotubes (MWCNTs) promote biodegradation in water treatment, but the effect of MWCNT on denitrification under aerobic conditions is still unclear. This investigation focused on the denitrification performance of MWCNT and its toxic effects on Alcaligenes sp. TB which showed that 30 mg/L MWCNTs increased NO3- removal efficiency from 84% to 100% and decreased the NO2-and N2O accumulation rates by 36% and 17.5%, respectively. Nitrite reductase and nitrous oxide reductase activities were further increased by 19.5% and 7.5%, respectively. The mechanism demonstrated that electron generation (NADH yield) and electron transportation system activity increased by 14.5% and 104%, respectively. Cell membrane analysis found that MWCNT caused an increase in polyunsaturated fatty acids, which had positive effects on electron transportation and membrane fluidity at a low concentration of 96 mg/kg but caused membrane lipid peroxidation and impaired membrane integrity at a high concentration of 115 mg/L. These findings confirmed that MWCNT affects the activity of Alcaligenes sp. TB and consequently enhances denitrification performance.


Subject(s)
Alcaligenes/metabolism , Denitrification/physiology , Nanotubes, Carbon , Water Purification/methods , Biodegradation, Environmental , Cell Membrane/drug effects , Cell Membrane/metabolism , Denitrification/drug effects , Electron Transport , Fatty Acids, Unsaturated/metabolism , NAD/metabolism , Nanotubes, Carbon/toxicity , Nitrates/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL