Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Semin Respir Crit Care Med ; 44(5): 594-611, 2023 10.
Article in English | MEDLINE | ID: mdl-37541315

ABSTRACT

This article provides an overview of the journey of inspired oxygen after its uptake across the alveolar-capillary interface, and the interplay among tissue perfusion, diffusion, and cellular respiration in the transport and utilization of oxygen. The critical interactions between oxygen and its facilitative carriers (hemoglobin in red blood cells and myoglobin in muscle cells), and with other respiratory and vasoactive molecules (carbon dioxide, nitric oxide, and carbon monoxide), are emphasized to illustrate how this versatile system dynamically optimizes regional convective transport and diffusive gas exchange. The rates of reciprocal gas exchange in the lung and the periphery must be well-matched and sufficient for meeting the range of energy demands from rest to maximal stress but not excessive as to become toxic. The mobile red blood cells play a vital role in matching tissue perfusion and gas exchange by dynamically regulating the controlled uptake of oxygen and communicating regional metabolic signals across different organs. Intracellular oxygen diffusion and facilitation via myoglobin into the mitochondria, and utilization via electron transport chain and oxidative phosphorylation, are summarized. Physiological and pathophysiological adaptations are briefly described. Dysfunction of any component across this integrated system affects all other components and elicits corresponding structural and functional adaptation aimed at matching the capacities across the entire system and restoring equilibrium under normal and pathological conditions.


Subject(s)
Myoglobin , Oxygen , Humans , Lung , Cell Respiration , Perfusion , Oxygen Consumption/physiology
2.
Ann Am Thorac Soc ; 20(2): 161-195, 2023 02.
Article in English | MEDLINE | ID: mdl-36723475

ABSTRACT

Multiple thoracic imaging modalities have been developed to link structure to function in the diagnosis and monitoring of lung disease. Volumetric computed tomography (CT) renders three-dimensional maps of lung structures and may be combined with positron emission tomography (PET) to obtain dynamic physiological data. Magnetic resonance imaging (MRI) using ultrashort-echo time (UTE) sequences has improved signal detection from lung parenchyma; contrast agents are used to deduce airway function, ventilation-perfusion-diffusion, and mechanics. Proton MRI can measure regional ventilation-perfusion ratio. Quantitative imaging (QI)-derived endpoints have been developed to identify structure-function phenotypes, including air-blood-tissue volume partition, bronchovascular remodeling, emphysema, fibrosis, and textural patterns indicating architectural alteration. Coregistered landmarks on paired images obtained at different lung volumes are used to infer airway caliber, air trapping, gas and blood transport, compliance, and deformation. This document summarizes fundamental "good practice" stereological principles in QI study design and analysis; evaluates technical capabilities and limitations of common imaging modalities; and assesses major QI endpoints regarding underlying assumptions and limitations, ability to detect and stratify heterogeneous, overlapping pathophysiology, and monitor disease progression and therapeutic response, correlated with and complementary to, functional indices. The goal is to promote unbiased quantification and interpretation of in vivo imaging data, compare metrics obtained using different QI modalities to ensure accurate and reproducible metric derivation, and avoid misrepresentation of inferred physiological processes. The role of imaging-based computational modeling in advancing these goals is emphasized. Fundamental principles outlined herein are critical for all forms of QI irrespective of acquisition modality or disease entity.


Subject(s)
Lung Diseases , Pulmonary Emphysema , Humans , Benchmarking , Lung/diagnostic imaging , Lung Diseases/diagnostic imaging , Respiration , Magnetic Resonance Imaging/methods
3.
Chest ; 163(4): 881-890, 2023 04.
Article in English | MEDLINE | ID: mdl-36356657

ABSTRACT

BACKGROUND: Pulmonary sarcoidosis is characterized by the accumulation of immune cells that form granulomas affecting the lungs. Efzofitimod (ATYR1923), a novel immunomodulator, selectively binds neuropilin 2, which is upregulated on immune cells in response to lung inflammation. RESEARCH QUESTION: What is the tolerability, safety, and effect on outcomes of efzofitimod in pulmonary sarcoidosis? STUDY DESIGN AND METHODS: In this randomized, double-blind, placebo-controlled study evaluating multiple ascending doses of efzofitimod administered intravenously every 4 weeks for 24 weeks, randomized patients (2:1) underwent a steroid taper to 5 mg/d by week 8 or < 5 mg/d after week 16. The primary end point was the incidence of adverse events (AEs); secondary end points included steroid reduction, change in lung function, and patient-reported outcomes on health-related quality-of-life scales. RESULTS: Thirty-seven patients received at least one dose of study medication. Efzofitimod was well tolerated at all doses, with no new or unexpected AEs and no dose-dependent AE incidence. Average daily steroid doses through end of study were 6.8 mg, 6.5 mg, and 5.6 mg for the 1 mg/kg, 3 mg/kg, and 5 mg/kg groups compared with 7.2 mg for placebo, resulting in a baseline-adjusted relative steroid reduction of 5%, 9%, and 22%, respectively. Clinically meaningful improvements were achieved across several patient-reported outcomes, several of which reached statistical significance in the 5 mg/kg dose arm. A dose-dependent but nonsignificant trend toward improved lung function also was observed for 3 and 5 mg/kg. INTERPRETATION: Efzofitimod was safe and well tolerated and was associated with dose-dependent improvements of several clinically relevant end points compared with placebo. The results of this study support further evaluation of efzofitimod in pulmonary sarcoidosis. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT03824392; URL: www. CLINICALTRIALS: gov.


Subject(s)
Sarcoidosis, Pulmonary , Humans , Sarcoidosis, Pulmonary/drug therapy , Lung
4.
Am J Respir Cell Mol Biol ; 66(2): e1-e14, 2022 02.
Article in English | MEDLINE | ID: mdl-35103557

ABSTRACT

Advancements in methods, technology, and our understanding of the pathobiology of lung injury have created the need to update the definition of experimental acute lung injury (ALI). We queried 50 participants with expertise in ALI and acute respiratory distress syndrome using a Delphi method composed of a series of electronic surveys and a virtual workshop. We propose that ALI presents as a "multidimensional entity" characterized by four "domains" that reflect the key pathophysiologic features and underlying biology of human acute respiratory distress syndrome. These domains are 1) histological evidence of tissue injury, 2) alteration of the alveolar-capillary barrier, 3) presence of an inflammatory response, and 4) physiologic dysfunction. For each domain, we present "relevant measurements," defined as those proposed by at least 30% of respondents. We propose that experimental ALI encompasses a continuum of models ranging from those focusing on gaining specific mechanistic insights to those primarily concerned with preclinical testing of novel therapeutics or interventions. We suggest that mechanistic studies may justifiably focus on a single domain of lung injury, but models must document alterations of at least three of the four domains to qualify as "experimental ALI." Finally, we propose that a time criterion defining "acute" in ALI remains relevant, but the actual time may vary based on the specific model and the aspect of injury being modeled. The continuum concept of ALI increases the flexibility and applicability of the definition to multiple models while increasing the likelihood of translating preclinical findings to critically ill patients.


Subject(s)
Acute Lung Injury/pathology , Inflammation/physiopathology , Research Report/trends , Acute Lung Injury/immunology , Animals
5.
ERJ Open Res ; 7(3)2021 Jul.
Article in English | MEDLINE | ID: mdl-34435029

ABSTRACT

In Europe, two commercial devices are available to measure combined single-breath diffusing capacity of the lung for nitric oxide (D LNO) and carbon monoxide (D LCO) in one manoeuvre. Reference values were derived by pooling datasets from both devices, but agreement between devices has not been established. We conducted a randomised crossover trial in 35 healthy adults (age 40.0±15.5 years, 51% female) to compare D LNO (primary end-point) between MasterScreen™ (Vyaire Medical, Mettawa, IL, USA) and HypAir (Medisoft, Dinant, Belgium) devices during a single visit under controlled conditions. Linear mixed models were used adjusting for device and period as fixed effects and random intercept for each participant. Difference in D LNO between HypAir and MasterScreen was 24.0 mL·min-1·mmHg-1 (95% CI 21.7-26.3). There was no difference in D LCO (-0.03 mL·min-1·mmHg-1, 95% CI -0.57-0.12) between devices while alveolar volume (V A) was higher on HypAir compared to MasterScreen™ (0.48 L, 95% CI 0.45-0.52). Disparity in the estimation of V A and the rate of NO uptake (KNO=D LNO/V A) could explain the discrepancy in D LNO between devices. Disparity in the estimation of V A and the rate of CO uptake (KCO=D LCO/V A) per unit of V A offset each other resulting in negligible discrepancy in D LCO between devices. Differences in methods of expiratory gas sampling and sensor specifications between devices likely explain these observations. These findings have important implications for derivation of D LNO reference values and comparison of results across studies. Until this issue is resolved, reference values, established on the respective devices, should be used for test interpretation.

6.
Am J Physiol Lung Cell Mol Physiol ; 321(4): L736-L749, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34346778

ABSTRACT

Normal lungs do not express α-Klotho (Klotho) protein but derive cytoprotection from circulating soluble Klotho. It is unclear whether chronic supranormal Klotho levels confer additional benefit. To address this, we tested the age-related effects of modest Klotho overexpression on acute lung injury (ALI) and recovery. Transgenic Klotho-overexpressing (Tg-Kl) and wild-type (WT) mice (2 and 6 mo old) were exposed to hyperoxia (95% O2; 72 h; injury; Hx) then returned to normoxia (21% O2; 24 h; recovery; Hx-R). Control mice were kept in normoxia. Renal and serum Klotho, lung histology, and bronchoalveolar lavage fluid oxidative damage markers were assessed. Effects of hyperoxia on Klotho release were tested in human embryonic kidney cells stably expressing Klotho. A549 lung epithelial cells transfected with Klotho cDNA or vector were exposed to cigarette smoke; lactate dehydrogenase and double-strand DNA breaks were measured. Serum Klotho decreased with age. Hyperoxia suppressed renal Klotho at both ages and serum Klotho at 2 mo of age. Tg-Kl mice at both ages and 2-mo-old WT mice survived Hx-R; 6-mo-old Tg-Kl mice showed lower lung damage than age-matched WT mice. Hyperoxia directly inhibited Klotho expression and release in vitro; Klotho transfection attenuated cigarette smoke-induced cytotoxicity and DNA double-strand breaks in lung epithelial cells. Young animals with chronic high baseline Klotho expression were more resistant to ALI. Chronic constitutive Klotho overexpression in older Tg-Kl animals attenuated hyperoxia-induced lung damage and improves survival and short-term recovery despite an acute reduction in serum Klotho during injury. We conclude that chronic enhancement of Klotho expression increases resilience to ALI.


Subject(s)
Acute Lung Injury/prevention & control , Glucuronidase/blood , Glucuronidase/metabolism , Smoke/adverse effects , Acute Lung Injury/pathology , Animals , Cell Line , Cytoprotection/genetics , Cytoprotection/physiology , DNA Breaks, Double-Stranded , DNA Damage/genetics , Female , Glucuronidase/genetics , HEK293 Cells , Humans , Hyperoxia , Klotho Proteins , L-Lactate Dehydrogenase/analysis , Lung/metabolism , Male , Mice , Mice, Transgenic
8.
J Appl Physiol (1985) ; 129(5): 1051-1061, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32909918

ABSTRACT

Cell-free secretory products (secretome) of human induced pluripotent stem cells (iPSCs) have been shown to attenuate tissue injury and facilitate repair and recovery. To examine whether iPSC secretome facilitates mechanically induced compensatory responses following unilateral pneumonectomy (PNX), litter-matched young adult female hounds underwent right PNX (removing 55%-58% of lung units), followed by inhalational delivery of either the nebulized-conditioned media containing induced pluripotent stem cell secretome (iPSC CM) or control cell-free media (CFM); inhalation was repeated every 5 days for 10 treatments. Lung function was measured under anesthesia pre-PNX and 10 days after the last treatment (8 wk post-PNX); detailed quantitative analysis of lung ultrastructure was performed postmortem. Pre-PNX lung function was similar between groups. Compared with CFM control, treatment with iPSC CM attenuated the post-PNX decline in lung diffusing capacity for carbon monoxide and membrane diffusing capacity, accompanied by a 24% larger postmortem lobar volume and distal air spaces. Alveolar double-capillary profiles were 39% more prevalent consistent with enhanced intussusceptive angiogenesis. Frequency distribution of the harmonic mean thickness of alveolar blood-gas barrier shifted toward the lowest values, whereas alveolar septal tissue volume and arithmetic septal thickness were similar, indicating septal remodeling and reduced diffusive resistance of the blood-gas barrier. Thus, repetitive inhalational delivery of iPSC secretome enhanced post-PNX alveolar angiogenesis and septal remodeling that are associated with improved gas exchange compensation. Results highlight the plasticity of the remaining lung units following major loss of lung mass that are responsive to broad-based modulation provided by the iPSC secretome.NEW & NOTEWORTHY To examine whether the secreted products of human induced pluripotent stem cells (iPSCs) facilitate innate adaptive responses following loss of lung tissue, adult dogs underwent surgical removal of one lung, then received repeated administration of iPSC secretory products via inhalational delivery compared with control treatment. Inhalation of iPSC secretory products enhanced capillary formation and beneficial structural remodeling in the remaining lung, leading to improved lung function.


Subject(s)
Induced Pluripotent Stem Cells , Lung , Pneumonectomy , Animals , Dogs , Female , Humans , Lung/physiology , Lung/surgery , Lung Volume Measurements , Pulmonary Diffusing Capacity
9.
J Appl Physiol (1985) ; 128(5): 1093-1105, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31944885

ABSTRACT

Mechanical stresses on the lung impose the major stimuli for developmental and compensatory lung growth and remodeling. We used computed tomography (CT) to noninvasively characterize the factors influencing lobar mechanical deformation in relation to posture, pneumonectomy (PNX), and exogenous proangiogenic factor supplementation. Post-PNX adult canines received weekly inhalations of nebulized nanoparticles loaded with recombinant human erythropoietin (EPO) or control (empty nanoparticles) for 16 wk. Supine and prone CT were performed at two transpulmonary pressures pre- and post-PNX following treatment. Lobar air and tissue volumes, fractional tissue volume (FTV), specific compliance (Cs), mechanical strains, and shear distortion were quantified. From supine to prone, lobar volume and Cs increased while strain and shear magnitudes generally decreased. From pre- to post-PNX, air volume increased less and FTV and Cs increased more in the left caudal (LCa) than in other lobes. FTV increased most in the dependent subpleural regions, and the portion of LCa lobe that expanded laterally wrapping around the mediastinum. Supine deformation was nonuniform pre- and post-PNX; strains and shear were most pronounced in LCa lobe and declined when prone. Despite nonuniform regional expansion and deformation, post-PNX lobar mechanics were well preserved compared with pre-PNX because of robust lung growth and remodeling establishing a new mechanical equilibrium. EPO treatment eliminated posture-dependent changes in FTV, accentuated the post-PNX increase in FTV, and reduced FTV heterogeneity without altering absolute air or tissue volumes, consistent with improved microvascular blood volume distribution and modestly enhanced post-PNX alveolar microvascular reserves.NEW & NOTEWORTHY Mechanical stresses on the lung impose the major stimuli for lung growth. We used computed tomography to image deformation of the lung in relation to posture, loss of lung units, and inhalational delivery of the growth promoter erythropoietin. Following loss of one lung in adult large animals, the remaining lung expanded and grew while retaining near-normal mechanical properties. Inhalation of erythropoietin promoted more uniform distribution of blood volume within the remaining lung.


Subject(s)
Erythropoietin , Pneumonectomy , Animals , Dogs , Humans , Lung/diagnostic imaging , Lung Volume Measurements , Posture
10.
Am J Physiol Lung Cell Mol Physiol ; 316(5): L936-L945, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30785346

ABSTRACT

Paracrine erythropoietin (EPO) signaling in the lung recruits endothelial progenitor cells, promotes cell maturation and angiogenesis, and is upregulated during canine postpneumonectomy (PNX) compensatory lung growth. To determine whether inhalational delivery of exogenous EPO augments endogenous post-PNX lung growth, adult canines underwent right PNX and received, via a permanent tracheal stoma, weekly nebulization of recombinant human EPO-containing nanoparticles or empty nanoparticles (control) for 16 wk. Lung function was assessed under anesthesia pre- and post-PNX. The remaining lobes were fixed for detailed morphometric analysis. Compared with control treatment, EPO delivery significantly increased serum EPO concentration without altering systemic hematocrit or hemoglobin concentration and abrogated post-PNX lipid oxidative stress damage. EPO delivery modestly increased post-PNX volume densities of the alveolar septum per unit of lung volume and type II epithelium and endothelium per unit of septal tissue volume in selected lobes. EPO delivery also augmented the post-PNX increase in alveolar double-capillary profiles, a marker of intussusceptive capillary formation, in all remaining lobes. EPO treatment did not significantly alter absolute resting lung volumes, lung and membrane diffusing capacities, alveolar-capillary blood volume, pulmonary blood flow, lung compliance, or extravascular alveolar tissue volumes or surface areas. Results established the feasibility of chronic inhalational delivery of growth-modifying biologics in a large animal model. Exogenous EPO selectively enhanced cytoprotection and alveolar angiogenesis in remaining lobes but not whole-lung extravascular tissue growth or resting function; the nonuniform response contributes to structure-function discrepancy, a major challenge for interventions aimed at amplifying the innate potential for compensatory lung growth.


Subject(s)
Capillaries/growth & development , Erythropoietin/pharmacology , Neovascularization, Physiologic/drug effects , Pneumonectomy , Pulmonary Alveoli , Administration, Inhalation , Animals , Blood Flow Velocity/drug effects , Dogs , Lung Compliance/drug effects , Male , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology , Pulmonary Alveoli/surgery
11.
FASEB Bioadv ; 1(11): 675-687, 2019 Nov.
Article in English | MEDLINE | ID: mdl-32123814

ABSTRACT

Alpha-Klotho (αKlotho), produced by the kidney and selected organs, is essential for tissue maintenance and protection. Homozygous αKlotho-deficiency leads to premature multi-organ degeneration and death; heterozygous insufficiency leads to apoptosis, oxidative stress, and increased injury susceptibility. There is inconsistent data in the literature regarding whether αKlotho is produced locally in the lung or derived from circulation. We probed murine and human lung by immunohistochemistry (IHC) and immunoblot (IB) using two monoclonal (anti-αKlotho Kl1 and Kl2 domains) and three other common commercial antibodies. Monoclonal anti-Kl1 and anti-Kl2 yielded no labeling in lung on IHC or IB; specific labeling was observed in kidney (positive control) and also murine lungs following tracheal delivery of αKlotho cDNA, demonstrating specificity and ability to detect artificial pulmonary expression. Other commercial antibodies labeled numerous lung structures (IHC) and multiple bands (IB) incompatible with known αKlotho mobility; labeling was not abolished by blocking with purified αKlotho or using lungs from hypomorphic αKlotho-deficient mice, indicating nonspecificity. Results highlight the need for rigorous validation of reagents. The lung lacks native αKlotho expression and derives full-length αKlotho from circulation; findings could explain susceptibility to lung injury in extrapulmonary pathology associated with reduced circulating αKlotho levels, for example, renal failure. Conversely, αKlotho may be artificially expressed in the lung, suggesting therapeutic opportunities.

12.
J Appl Physiol (1985) ; 125(5): 1411-1423, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30091664

ABSTRACT

A colony of deer mice subspecies ( Peromyscus maniculatus sonoriensis) native to high altitude (HA) has been maintained at sea level for 18-20 generations and remains genetically unchanged. To determine if these animals retain responsiveness to hypoxia, one group (9-11 wk old) was acclimated to HA (3,800 m) for 8 wk. Age-matched control animals were acclimated to a lower altitude (LA; 252 m). Maximal O2 uptake (V̇o2max) was measured at the respective altitudes. On a separate day, lung volume, diffusing capacity for carbon monoxide (DLCO), and pulmonary blood flow were measured under anesthesia using a rebreathing technique at two inspired O2 tensions. The HA-acclimated deer mice maintained a normal V̇o2max relative to LA baseline. Compared with LA control mice, antemortem lung volume was larger in HA mice in a manner dependent on alveolar O2 tension. Systemic hematocrit, pulmonary blood flow, and standardized DLCO did not differ significantly between groups. HA mice showed a higher postmortem alveolar-capillary hematocrit, larger alveolar ducts, and smaller distal conducting structures. In HA mice, absolute volumes of alveolar type I epithelia and endothelia were higher whereas that of interstitia was lower than in LA mice. These structural changes occurred without a net increase in whole-lung septal tissue-capillary volumes or surface areas. Thus, deer mice bred and raised to adulthood at LA retain phenotypic plasticity and adapt to HA without a decrement in V̇o2max via structural (enlarged airspaces, alveolar septal remodeling) and nonstructural (lung expansion under hypoxia) mechanisms and without an increase in systemic hematocrit or compensatory lung growth. NEW & NOTEWORTHY Deer mice ( Peromyscus maniculatus) are robust and very active mammals that are found across the North American continent. They are also highly adaptable to extreme environments. When introduced to high altitude they retain remarkable adaptive ability to the low-oxygen environment via lung expansion and remodeling of existing lung structure, thereby maintaining normal aerobic capacity without generating more red blood cells or additional lung tissue.


Subject(s)
Acclimatization , Altitude , Lung/physiology , Peromyscus/physiology , Respiration , Animals , Biometry , Lung/ultrastructure , Male , Organ Size , Peromyscus/anatomy & histology , Respiratory Function Tests
13.
Stem Cells ; 36(4): 616-625, 2018 04.
Article in English | MEDLINE | ID: mdl-29226550

ABSTRACT

Induced pluripotent stem cells (iPSCs) have been reported to alleviate organ injury, although the mechanisms of action remain unclear and administration of intact cells faces many limitations. We hypothesized that cell-free conditioned media (CM) containing the secretome of iPSCs possess antioxidative constituents that can alleviate pulmonary oxidant stress damage. We derived iPSCs from human dermal fibroblasts and harvested the CM. Addition of iPSC CM to cultured human alveolar type-1 epithelial cells mitigated hyperoxia-induced depletion of endogenous total antioxidant capacity while tracheal instillation of iPSC CM into adult rat lungs enhanced hyperoxia-induced increase in TAC. In both the in vitro and in vivo models, iPSC CM ameliorated oxidative damage to DNA, lipid, and protein, and activated the nuclear factor (erythroid 2)-related factor 2 (Nrf2) network of endogenous antioxidant proteins. Compared with control fibroblast-conditioned or cell-free media, iPSC CM is highly enriched with αKlotho at a concentration up to more than 10-fold of that in normal serum. αKlotho is an essential antioxidative cell maintenance and protective factor and an activator of the Nrf2 network. Immunodepletion of αKlotho reduced iPSC CM-mediated cytoprotection by ∼50%. Thus, the abundant αKlotho content significantly contributes to iPSC-mediated antioxidation and cytoprotection. Results uncover a major mechanism of iPSC action, suggest a fundamental role of αKlotho in iPSC maintenance, and support the translational potential of airway delivery of cell-free iPSC secretome for protection against lung injury. The targeted cell-free secretome-based approach may also be applicable to the amelioration of injury in other organs. Stem Cells 2018;36:616-625.


Subject(s)
Acute Lung Injury/metabolism , Alveolar Epithelial Cells/metabolism , Antioxidants/metabolism , Glucuronidase/metabolism , Induced Pluripotent Stem Cells/metabolism , Acute Lung Injury/pathology , Alveolar Epithelial Cells/pathology , Animals , Humans , Induced Pluripotent Stem Cells/pathology , Klotho Proteins , Male , NF-E2-Related Factor 2/metabolism , Rats, Sprague-Dawley
15.
Bone ; 100: 100-109, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28347910

ABSTRACT

The lung interfaces with atmospheric oxygen via a large surface area and is perfused by the entire venous return bearing waste products collected from the whole body. It is logical that the lung is endowed with generous anti-oxidative capacity derived both locally and from the circulation. The single-pass pleiotropic alpha-Klotho (αKlotho) protein was discovered when its genetic disruption led to premature multi-organ degeneration and early death. The extracellular domain of αKlotho is cleaved by secretases and released into circulation as endocrine soluble αKlotho protein, exerting wide-ranging cytoprotective effects including anti-oxidation on distant organs including the lung, which exhibits high sensitivity to circulating αKlotho insufficiency. Because circulating αKlotho is derived mainly from the kidney, acute kidney injury (AKI) leads to systemic αKlotho deficiency that in turn increases the risks of pulmonary complications, i.e., edema and inflammation, culminating in the acute respiratory distress syndrome. Exogenous αKlotho increases endogenous anti-oxidative capacity partly via activation of the Nrf2 pathway to protect lungs against injury caused by direct hyperoxia exposure or AKI. This article reviews the current knowledge of αKlotho antioxidation in the lung in the setting of AKI as a model of circulating αKlotho deficiency, an under-recognized condition that weakens innate cytoprotective defenses and contributes to the dysfunction in distant organs.


Subject(s)
Acute Kidney Injury/metabolism , Acute Lung Injury/metabolism , Antioxidants/metabolism , Kidney/metabolism , Renal Insufficiency, Chronic/metabolism , Animals , Humans , Respiratory Distress Syndrome/metabolism
16.
PLoS One ; 12(2): e0171165, 2017.
Article in English | MEDLINE | ID: mdl-28151947

ABSTRACT

Decellularized extracellular matrix (ECM) contains complex tissue-specific components that work in concert to promote tissue repair and constructive remodeling and has been used experimentally and clinically to accelerate epithelial wound repair, leading us to hypothesize that lung-derived ECM could mitigate acute lung injury. To explore the therapeutic potential of ECM for noninvasive delivery to the lung, we decellularized and solubilized porcine lung ECM, then characterized the composition, concentration, particle size and stability of the preparation. The ECM preparation at 3.2 mg/mL with average particle size <3 µm was tested in vitro on human A549 lung epithelial cells exposed to 95% O2 for 24 hours, and in vivo by tracheal instillation or nebulization into the lungs of rats exposed intermittently or continuously to 90% O2 for a cumulative 72 hours. Our results showed that the preparation was enriched in collagen, reduced in glycosaminoglycans, and contained various bioactive molecules. Particle size was concentration-dependent. Compared to the respective controls treated with cell culture medium in vitro or saline in vivo, ECM inhalation normalized cell survival and alveolar morphology, and reduced hyperoxia-induced apoptosis and oxidative damage. This proof-of-concept study established the methodology, feasibility and therapeutic potential of exogenous solubilized ECM for pulmonary cytoprotection, possibly as an adjunct or potentiator of conventional therapy.


Subject(s)
Acute Lung Injury/prevention & control , Extracellular Matrix/physiology , Protective Agents/administration & dosage , A549 Cells , Acute Lung Injury/pathology , Administration, Inhalation , Animals , Apoptosis/drug effects , Collagen/administration & dosage , Collagen/chemistry , Cytoprotection/drug effects , Disease Models, Animal , Extracellular Matrix/chemistry , Extracellular Matrix/ultrastructure , Glycosaminoglycans/administration & dosage , Glycosaminoglycans/chemistry , Humans , Hyperoxia/drug therapy , Hyperoxia/pathology , Lung/cytology , Lung/drug effects , Protective Agents/chemistry , Rats , Rats, Sprague-Dawley , Solubility , Sus scrofa
17.
Eur Respir J ; 49(2)2017 02.
Article in English | MEDLINE | ID: mdl-28179436

ABSTRACT

Diffusing capacity of the lung for nitric oxide (DLNO), otherwise known as the transfer factor, was first measured in 1983. This document standardises the technique and application of single-breath DLNO This panel agrees that 1) pulmonary function systems should allow for mixing and measurement of both nitric oxide (NO) and carbon monoxide (CO) gases directly from an inspiratory reservoir just before use, with expired concentrations measured from an alveolar "collection" or continuously sampled via rapid gas analysers; 2) breath-hold time should be 10 s with chemiluminescence NO analysers, or 4-6 s to accommodate the smaller detection range of the NO electrochemical cell; 3) inspired NO and oxygen concentrations should be 40-60 ppm and close to 21%, respectively; 4) the alveolar oxygen tension (PAO2 ) should be measured by sampling the expired gas; 5) a finite specific conductance in the blood for NO (θNO) should be assumed as 4.5 mL·min-1·mmHg-1·mL-1 of blood; 6) the equation for 1/θCO should be (0.0062·PAO2 +1.16)·(ideal haemoglobin/measured haemoglobin) based on breath-holding PAO2 and adjusted to an average haemoglobin concentration (male 14.6 g·dL-1, female 13.4 g·dL-1); 7) a membrane diffusing capacity ratio (DMNO/DMCO) should be 1.97, based on tissue diffusivity.


Subject(s)
Blood Volume , Nitric Oxide/blood , Pulmonary Alveoli/blood supply , Pulmonary Diffusing Capacity/standards , Adolescent , Adult , Aged , Aged, 80 and over , Capillary Permeability , Carbon Monoxide/blood , Female , Hemoglobins/analysis , Humans , Linear Models , Male , Middle Aged , Oxygen/blood , Young Adult
18.
Cell Tissue Res ; 367(3): 687-705, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28084523

ABSTRACT

This review compares the manner in which physical stress imposed on the parenchyma, vasculature and thorax and the thoraco-pulmonary interactions, drive both developmental and compensatory lung growth. Re-initiation of anatomical lung growth in the mature lung is possible when the loss of functioning lung units renders the existing physiologic-structural reserves insufficient for maintaining adequate function and physical stress on the remaining units exceeds a critical threshold. The appropriate spatial and temporal mechanical interrelationships and the availability of intra-thoracic space, are crucial to growth initiation, follow-on remodeling and physiological outcome. While the endogenous potential for compensatory lung growth is retained and may be pharmacologically augmented, supra-optimal mechanical stimulation, unbalanced structural growth, or inadequate remodeling may limit functional gain. Finding ways to optimize the signal-response relationships and resolve structure-function discrepancies are major challenges that must be overcome before the innate compensatory ability could be fully realized. Partial pneumonectomy reproducibly removes a known fraction of functioning lung units and remains the most robust model for examining the adaptive mechanisms, structure-function consequences and plasticity of the remaining functioning lung units capable of regeneration. Fundamental mechanical stimulus-response relationships established in the pneumonectomy model directly inform the exploration of effective approaches to maximize compensatory growth and function in chronic destructive lung diseases, transplantation and bioengineered lungs.


Subject(s)
Lung/growth & development , Lung/metabolism , Mechanotransduction, Cellular , Signal Transduction , Animals , Regeneration , Translational Research, Biomedical
19.
J Appl Physiol (1985) ; 121(1): 312-23, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27150830

ABSTRACT

Following pneumonectomy (PNX), two separate mechanical forces act on the remaining lung: parenchymal stress caused by lung expansion, and microvascular distension and shear caused by increased perfusion. We previously showed that parenchymal stress and strain explain approximately one-half of overall compensation; the remainder was presumptively attributed to perfusion-related factors. In this study, we directly tested the hypothesis that perturbation of regional pulmonary perfusion modulates post-PNX lung growth. Adult canines underwent banding of the pulmonary artery (PAB) to the left caudal (LCa) lobe, which caused a reduction in basal perfusion to LCa lobe without preventing the subsequent increase in its perfusion following right PNX while simultaneously exaggerating the post-PNX increase in perfusion to the unbanded lobes, thereby creating differential perfusion changes between banded and unbanded lobes. Control animals underwent sham pulmonary artery banding followed by right PNX. Pulmonary function, regional pulmonary perfusion, and high-resolution computed tomography of the chest were analyzed pre-PNX and 3-mo post-PNX. Terminally, the remaining lobes were fixed for detailed morphometric analysis. Results were compared with corresponding lobes in two control (Sham banding and normal unoperated) groups. PAB impaired the indices of post-PNX extravascular alveolar tissue growth by up to 50% in all remaining lobes. PAB enhanced the expected post-PNX increase in alveolar capillary formation, measured by the prevalence of double-capillary profiles, in both unbanded and banded lobes. We conclude that perfusion distribution provides major stimuli for post-PNX compensatory lung growth independent of the stimuli provided by lung expansion and parenchymal stress and strain.


Subject(s)
Lung/physiology , Regeneration/physiology , Animals , Capillaries/physiology , Dogs , Lung Volume Measurements/methods , Male , Perfusion/methods , Pneumonectomy/methods , Pulmonary Artery/physiology , Pulmonary Gas Exchange/physiology , Stress, Mechanical , Tomography, X-Ray Computed/methods
20.
J Investig Med ; 64(5): 1025-34, 2016 06.
Article in English | MEDLINE | ID: mdl-27053725

ABSTRACT

Vitamin-D insufficiency and sarcoidosis are more common and severe in African Americans (AA) than Caucasians. In sarcoidosis, substrate-dependent extrarenal 1,25-dihydroxyvitamin-D (1,25-(OH)2D) production is thought to contribute to hypercalciuria and hypercalcemia, and vitamin-D repletion is often avoided. However, the anti-inflammatory properties of vitamin-D may also be beneficial. We prospectively examined serum vitamin-D levels, calcium balance, and the effects of vitamin-D repletion in 86 AA and Caucasian patients with biopsy-proven active sarcoidosis from the USA (US) and Italy (IT) in university-affiliated outpatient clinics. Clinical features, pulmonary function, and calciotropic hormones were measured. 16 patients with vitamin-D deficiency and normal serum ionized calcium (Ca(2+)) were treated with oral ergocalciferol (50,000 IU/week) for 12 weeks. Baseline mineral parameters were similar in US (93% AA) and IT (95% Caucasian) patients irrespective of glucocorticoid treatment. Pulmonary dysfunction was less pronounced in IT patients. Nephrolithiasis (in 11% US, 17% IT patients) was associated with higher urinary calcium excretion. Vitamin-D deficiency was not more prevalent in patients compared to the respective general populations. As serum 25-hydroxyvitamin-D (25-OHD) rose postrepletion, serum 1,25-(OH)2D, γ-globulins, and the previously elevated angiotensin converting enzyme (ACE) levels declined. Asymptomatic reversible increases in Ca(2+) or urinary calcium/creatinine (Ca/Cr) developed in three patients during repletion. In conclusion, Caucasian and AA patients show similar calcium and vitamin D profiles. The higher prevalence of hypercalciuria and nephrolithiasis in sarcoidosis is unrelated to endogenous vitamin-D levels. Vitamin-D repletion in sarcoidosis is generally safe, although calcium balance should be monitored. A hypothesis that 25-OHD repletion suppresses granulomatous immune activity is provided.


Subject(s)
Ethnicity , Minerals/metabolism , Sarcoidosis/blood , Vitamin D/analogs & derivatives , Calcium/urine , Case-Control Studies , Demography , Female , Glucocorticoids/therapeutic use , Humans , Italy , Male , Middle Aged , Nephrolithiasis/blood , Nephrolithiasis/complications , Nephrolithiasis/physiopathology , Sarcoidosis/drug therapy , Sarcoidosis/physiopathology , Sarcoidosis/urine , United States , Vitamin D/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...