Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Ethnopharmacol ; 327: 118008, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38458343

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Compendium of Materia Medica and the Classic of Materia Medica, the two most prominent records of traditional Chinese medicine, documented the therapeutic benefits of Ganoderma sinense particularly in addressing pulmonary-related ailments. Ganoderma formosanum, an indigenous subspecies of G. sinense from Taiwan, has demonstrated the same therapeutic properties. AIM OF THE STUDY: The aim of this study is to identify bioactive compounds and evaluate the potential of G. formosanum extracts as a novel treatment to alleviate pulmonary fibrosis (PF). Using an in-house drug screening platform, two-stage screening was performed to determine their anti-fibrotic efficacy. METHODS AND MATERIALS: G. formosanum was fractionated into four partitions by solvents of different polarities. To determine their antifibrotic and pro-apoptotic properties, the fractions were analyzed using two TGF-ß1-induced pulmonary fibrosis cell models (NIH-3T3) and human pulmonary fibroblast cell lines, immunoblot, qRT-PCR, and annexin V assays. Subsequently, transcriptomic analysis was conducted to validate the findings and explore possible molecular pathways. The identification of potential bioactive compounds was achieved through UHPLC-MS/MS analysis, while molecular interaction study was investigated by multiple ligands docking and molecular dynamic simulations. RESULTS: The ethyl acetate fraction (EAF) extracted from G. formosanum demonstrated substantial anti-fibrotic and pro-apoptotic effects on TGF-ß1-induced fibrotic models. Moreover, the EAF exhibited no discernible cytotoxicity. Untargeted UHPLC-MS/MS analysis identified potential bioactive compounds in EAF, including stearic acid, palmitic acid, and pentadecanoic acid. Multiple ligands docking and molecular dynamic simulations further confirmed that those bioactive compounds possess the ability to inhibit TGF-ß receptor 1. CONCLUSION: Potential bioactive compounds in G. formosanum were successfully extracted and identified in the EAF, whose anti-fibrotic and pro-apoptotic properties could potentially modulate pulmonary fibrosis. This finding not only highlights the EAF's potential as a promising therapeutic candidate to treat pulmonary fibrosis, but it also elucidates how Ganoderma confers pulmonary health benefits as described in the ancient texts.


Subject(s)
Ganoderma , Materia Medica , Pulmonary Fibrosis , Humans , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/metabolism , Materia Medica/pharmacology , Tandem Mass Spectrometry , Fibrosis , Lung
2.
Mol Nutr Food Res ; 68(5): e2300667, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38282089

ABSTRACT

SCOPE: Particulate matter (PM) contains toxic organic matter and heavy metals that enter the entire body through blood flow and may cause mortality. Ganoderma formosanum mycelium, a valuable traditional Chinese medicine that has been used since ancient times, contains various active ingredients that can effectively impede inflammatory responses on murine alveolar macrophages induced by PM particles. METHODS AND RESULTS: An experimental study assessing the effect of G. formosanum mycelium extract's water fraction (WA) on PM-exposed murine alveolar macrophages using ROS measurement shows that WA reduces intracellular ROS by 12% and increases cell viability by 16% when induced by PM particles. According to RNA-Sequencing, western blotting, and real-time qPCR are conducted to analyze the metabolic pathway. The WA reduces the protein ratio in p-NF-κB/NF-κB by 18% and decreases the expression of inflammatory genes, including IL-1ß by 38%, IL-6 by 29%, and TNF-α by 19%. Finally, the identification of seven types of anti-inflammatory compounds in the WA fraction is achieved through UHPLC-ESI-Orbitrap-Elite-MS/MS analysis. These compounds include anti-inflammatory compounds, namely thiamine, adenosine 5'-monophosphate, pipecolic acid, L-pyroglutamic acid, acetyl-L-carnitine, D-mannitol, and L-malic acid. CONCLUSIONS: The study suggests that the WA has the potential to alleviate the PM -induced damage in alveolar macrophages, demonstrating its anti-inflammatory properties.


Subject(s)
Ganoderma , Macrophages, Alveolar , NF-kappa B , Mice , Animals , Macrophages, Alveolar/chemistry , Macrophages, Alveolar/metabolism , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Tandem Mass Spectrometry , Particulate Matter/toxicity , Particulate Matter/analysis , Anti-Inflammatory Agents/pharmacology , Lung/chemistry , Lung/metabolism
3.
Int J Biol Macromol ; 253(Pt 8): 127495, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37858642

ABSTRACT

Developing biocompatible and antibacterial materials with biodegradable polymers is an ideal strategy to improve public health problems and plastic pollution simultaneously. In the present study, novel biocompatible and antibacterial poly (L-lactic acid) (PLLA, coded as P)/TEMPO-oxidized cellulose nanofiber (TOCNF, coded as T)­silver nanoparticle (AgNP, coded as A) films were first developed. The core/shell PT Pickering emulsion was prepared by sonication treatment. The TOCNF shells with -COO-Na+ groups (∼1.5 mmol/g cellulose) were used as the support to in situ synthesize and immobilize AgNPs on the PT emulsion droplets. Silver nitrate (AgNO3) (1.5, 3.0, 4.5, and 6.0 mmol/g cellulose) was added to the PT emulsions. Then, ion-exchange reaction and hydrothermal reduction were conducted to form PTA (PTA1-PTA4) emulsions. After centrifugation to remove the excess Ag+, filtration, oven-drying, and hot-pressing, the PTA composite films were successfully prepared. The PTA3 film contained AgNPs 12.4 ± 2.8 nm in diameter and exhibited the highest antibacterial activities against the E. coli (85.2%) and S. aureus (80.1%) at 37 °C, where the initial bacterial suspension concentrations were approximately 2 × 108 CFU mL-1. Therefore, the biocompatible and antibacterial PTA3 film is a promising candidate for biomedical applications, in particular as an antibacterial bioactive packaging material.


Subject(s)
Metal Nanoparticles , Nanofibers , Cellulose , Emulsions , Escherichia coli , Staphylococcus aureus , Silver , Anti-Bacterial Agents/pharmacology
4.
Food Res Int ; 168: 112707, 2023 06.
Article in English | MEDLINE | ID: mdl-37120190

ABSTRACT

The study utilized fresh fourth-day Chenopodium formosanum sprouts as the substrate for Rhizopus oligosporus fermentation. The resultant products showed higher antioxidant capacity than those from C. formosanum grains. Compared to traditional plate fermentation (PF), fermentation in a bioreactor (BF) (35 °C, 0.4 vvm aeration at 5 rpm) led to higher free peptide content (99.56 ± 7.77 mg casein tryptone/g) and enzyme activity (amylase, glucosidase, and proteinase are 2.21 ± 0.01, 54.57 ± 10.88, and 40.81 ± 6.52 U/g, respectively) than traditional plate fermentation (PF). Using mass spectrometry analysis, two peptides TDEYGGSIENRFMN and DNSMLTFEGAPVQGAAAITEK were predicted to possess high bioactive properties as DPP IV and ACE inhibitors. Additionally, over twenty new metabolites (aromatics, amines, fatty acids, and carboxylic acids) were discovered in the BF system compared to its PF counterpart. Results suggest that using a BF system to ferment C. formosanum sprouts is an appropriate method to scale-up fermentation and enhance nutritional values as well as bioactivities.


Subject(s)
Chenopodium , Fermentation , Chenopodium/chemistry , Bioreactors , Antioxidants , Mass Spectrometry
5.
J Food Drug Anal ; 31(4): 626-638, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38526824

ABSTRACT

Rhizopus oligosporus was utilized in the solid-state fermentation of Chenopodiumformosanumsprouts (FCS) in a bioreactor. Subsequently, the antioxidant activity of food proteins derived from FCS was investigated. Results showed that glycine-rich peptide (GGGGGKP, G-rich peptide), identified from the <2 kDa FCS proteins, had antioxidant values. According to SwissADME, AllerTOP, ToxinPred, and BIOPEP-UWM analyses, G-rich peptide was identified as safe, non-toxic, and non-allergenic. Afterward, the peptide was examined using in silico and in vitro studies to evaluate its potential alleviating oxidative stress caused by particulate matter. This study proposed plausible mechanisms that involve the binding of G-rich peptide which inhibited phosphorylation of the v-rel avian reticuloendotheliosis viral oncogene homologA(RELA) subunit onNF-κB pathway. The inhibition then resulted in down regulation of NF-κB transcription and genetic expression of inflammatory responses. These findings suggested that G-rich peptide from FCS proteins can potentially alleviate oxidative stress.


Subject(s)
Antioxidants , NF-kappa B , Antioxidants/pharmacology , Antioxidants/metabolism , NF-kappa B/metabolism , Oxidative Stress , Gene Expression , Peptides/pharmacology , Peptides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL