Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stem Cell ; 30(5): 665-676.e4, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37146585

ABSTRACT

Although midlobular hepatocytes in zone 2 are a recently identified cellular source for liver homeostasis and regeneration, these cells have not been exclusively fate mapped. We generated an Igfbp2-CreER knockin strain that specifically labels midlobular hepatocytes. During homeostasis over 1 year, zone 2 hepatocytes increased in abundance from occupying 21%-41% of the lobular area. After either pericentral injury with carbon tetrachloride or periportal injury with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), IGFBP2+ cells replenished lost hepatocytes in zones 3 and 1, respectively. IGFBP2+ cells also preferentially contributed to regeneration after 70% partial hepatectomy, as well as liver growth during pregnancy. Because IGFBP2 labeling increased substantially with fasting, we used single nuclear transcriptomics to explore zonation as a function of nutrition, revealing that the zonal division of labor shifts dramatically with fasting. These studies demonstrate the contribution of IGFBP2-labeled zone 2 hepatocytes to liver homeostasis and regeneration.


Subject(s)
Insulin-Like Growth Factor Binding Protein 2 , Liver Regeneration , Liver , Hepatectomy , Hepatocytes , Homeostasis , Insulin-Like Growth Factor Binding Protein 2/metabolism
2.
Hepatology ; 78(4): 1133-1148, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37039560

ABSTRACT

BACKGROUND AND AIMS: The liver is remarkably regenerative and can completely recover even when 80% of its mass is surgically removed. Identification of secreted factors that regulate liver growth would help us understand how organ size and regeneration are controlled but also provide candidate targets to promote regeneration or impair cancer growth. APPROACH AND RESULTS: To enrich for secreted factors that regulate growth control, we induced massive liver overgrowth with either YAP or MYC . Differentially expressed secreted factors were identified in these livers using transcriptomic analysis. To rank candidates by functionality, we performed in vivo CRISPR screening using the Fah knockout model of tyrosinemia. We identified secreted phosphoprotein-2 (SPP2) as a secreted factor that negatively regulates regeneration. Spp2 -deficient mice showed increased survival after acetaminophen poisoning and reduced fibrosis after repeated carbon tetrachloride injections. We examined the impact of SPP2 on bone morphogenetic protein signaling in liver cells and found that SPP2 antagonized bone morphogenetic protein signaling in vitro and in vivo. We also identified cell-surface receptors that interact with SPP2 using a proximity biotinylation assay coupled with mass spectrometry. We showed that SPP2's interactions with integrin family members are in part responsible for some of the regeneration phenotypes. CONCLUSIONS: Using an in vivo CRISPR screening system, we identified SPP2 as a secreted factor that negatively regulates liver regeneration. This study provides ways to identify, validate, and characterize secreted factors in vivo.


Subject(s)
Liver Regeneration , Neoplasms , Mice , Animals , Liver/metabolism , Hepatocytes/metabolism , Signal Transduction
3.
Cell ; 186(9): 1968-1984.e20, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37040760

ABSTRACT

Somatic mutations in nonmalignant tissues accumulate with age and injury, but whether these mutations are adaptive on the cellular or organismal levels is unclear. To interrogate genes in human metabolic disease, we performed lineage tracing in mice harboring somatic mosaicism subjected to nonalcoholic steatohepatitis (NASH). Proof-of-concept studies with mosaic loss of Mboat7, a membrane lipid acyltransferase, showed that increased steatosis accelerated clonal disappearance. Next, we induced pooled mosaicism in 63 known NASH genes, allowing us to trace mutant clones side by side. This in vivo tracing platform, which we coined MOSAICS, selected for mutations that ameliorate lipotoxicity, including mutant genes identified in human NASH. To prioritize new genes, additional screening of 472 candidates identified 23 somatic perturbations that promoted clonal expansion. In validation studies, liver-wide deletion of Tbx3, Bcl6, or Smyd2 resulted in protection against hepatic steatosis. Selection for clonal fitness in mouse and human livers identifies pathways that regulate metabolic disease.


Subject(s)
Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Animals , Humans , Male , Mice , Histone-Lysine N-Methyltransferase/genetics , Liver/metabolism , Mosaicism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism
4.
bioRxiv ; 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36993727

ABSTRACT

Somatic mutations in non-malignant tissues accumulate with age and insult, but whether these mutations are adaptive on the cellular or organismal levels is unclear. To interrogate mutations found in human metabolic disease, we performed lineage tracing in mice harboring somatic mosaicism subjected to non-alcoholic steatohepatitis (NASH). Proof-of-concept studies with mosaic loss of Mboat7 , a membrane lipid acyltransferase, showed that increased steatosis accelerated clonal disappearance. Next, we induced pooled mosaicism in 63 known NASH genes, allowing us to trace mutant clones side-by-side. This in vivo tracing platform, which we coined MOSAICS, selected for mutations that ameliorate lipotoxicity, including mutant genes identified in human NASH. To prioritize new genes, additional screening of 472 candidates identified 23 somatic perturbations that promoted clonal expansion. In validation studies, liver-wide deletion of Bcl6, Tbx3, or Smyd2 resulted in protection against NASH. Selection for clonal fitness in mouse and human livers identifies pathways that regulate metabolic disease. Highlights: Mosaic Mboat7 mutations that increase lipotoxicity lead to clonal disappearance in NASH. In vivo screening can identify genes that alter hepatocyte fitness in NASH. Mosaic Gpam mutations are positively selected due to reduced lipogenesis. In vivo screening of transcription factors and epifactors identified new therapeutic targets in NASH.

5.
bioRxiv ; 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36993753

ABSTRACT

Chemical modification of RNAs is important for post-transcriptional gene regulation. The METTL3-METTL14 complex generates most N 6 -methyladenosine (m 6 A) modifications in mRNAs, and dysregulated methyltransferase expression has been linked to numerous cancers. Here we show that changes in m 6 A modification location can impact oncogenesis. A gain-of-function missense mutation found in cancer patients, METTL14 R298P , promotes malignant cell growth in culture and in transgenic mice. The mutant methyltransferase preferentially modifies noncanonical sites containing a GGAU motif and transforms gene expression without increasing global m 6 A levels in mRNAs. The altered substrate specificity is intrinsic to METTL3-METTL14, helping us to propose a structural model for how the METTL3-METTL14 complex selects the cognate RNA sequences for modification. Together, our work highlights that sequence-specific m 6 A deposition is important for proper function of the modification and that noncanonical methylation events can impact aberrant gene expression and oncogenesis.

6.
Science ; 371(6532)2021 02 26.
Article in English | MEDLINE | ID: mdl-33632817

ABSTRACT

The liver is organized into zones in which hepatocytes express different metabolic enzymes. The cells most responsible for liver repopulation and regeneration remain undefined, because fate mapping has only been performed on a few hepatocyte subsets. Here, 14 murine fate-mapping strains were used to systematically compare distinct subsets of hepatocytes. During homeostasis, cells from both periportal zone 1 and pericentral zone 3 contracted in number, whereas cells from midlobular zone 2 expanded in number. Cells within zone 2, which are sheltered from common injuries, also contributed to regeneration after pericentral and periportal injuries. Repopulation from zone 2 was driven by the insulin-like growth factor binding protein 2-mechanistic target of rapamycin-cyclin D1 (IGFBP2-mTOR-CCND1) axis. Therefore, different regions of the lobule exhibit differences in their contribution to hepatocyte turnover, and zone 2 is an important source of new hepatocytes during homeostasis and regeneration.


Subject(s)
Hepatocytes/physiology , Liver Regeneration , Liver/physiology , Animals , Biliary Tract/cytology , Biliary Tract Diseases/physiopathology , Cell Proliferation , Cyclin D1/metabolism , Gene Knock-In Techniques , Homeostasis , Insulin-Like Growth Factor Binding Protein 2/metabolism , Liver/cytology , Mice , TOR Serine-Threonine Kinases/metabolism
7.
Cell Rep ; 28(7): 1860-1878.e9, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31412252

ABSTRACT

Squamous cell carcinoma (SCC), a malignancy arising across multiple anatomical sites, is responsible for significant cancer mortality due to insufficient therapeutic options. Here, we identify exceptional glucose reliance among SCCs dictated by hyperactive GLUT1-mediated glucose influx. Mechanistically, squamous lineage transcription factors p63 and SOX2 transactivate the intronic enhancer cluster of SLC2A1. Elevated glucose influx fuels generation of NADPH and GSH, thereby heightening the anti-oxidative capacity in SCC tumors. Systemic glucose restriction by ketogenic diet and inhibiting renal glucose reabsorption with SGLT2 inhibitor precipitate intratumoral oxidative stress and tumor growth inhibition. Furthermore, reduction of blood glucose lowers blood insulin levels, which suppresses PI3K/AKT signaling in SCC cells. Clinically, we demonstrate a robust correlation between blood glucose concentration and worse survival among SCC patients. Collectively, this study identifies the exceptional glucose reliance of SCC and suggests its candidacy as a highly vulnerable cancer type to be targeted by systemic glucose restriction.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Gene Expression Regulation, Neoplastic , Glucose Transporter Type 1/physiology , Glucose/metabolism , Membrane Proteins/metabolism , SOXB1 Transcription Factors/metabolism , AMP-Activated Protein Kinases , Animals , Apoptosis , Carcinoma, Squamous Cell/genetics , Cell Proliferation , Female , Humans , Male , Membrane Proteins/genetics , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases/physiology , SOXB1 Transcription Factors/genetics , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
8.
Am J Respir Cell Mol Biol ; 58(2): 216-231, 2018 02.
Article in English | MEDLINE | ID: mdl-28915065

ABSTRACT

Hypoxia has long been implicated in the pathogenesis of fibrotic diseases. Aberrantly activated myofibroblasts are the primary pathological driver of fibrotic progression, yet how various microenvironmental influences, such as hypoxia, contribute to their sustained activation and differentiation is poorly understood. As a defining feature of hypoxia is its impact on cellular metabolism, we sought to investigate how hypoxia-induced metabolic reprogramming affects myofibroblast differentiation and fibrotic progression, and to test the preclinical efficacy of targeting glycolytic metabolism for the treatment of pulmonary fibrosis. Bleomycin-induced pulmonary fibrotic progression was evaluated in two independent, fibroblast-specific, promoter-driven, hypoxia-inducible factor (Hif) 1A knockout mouse models and in glycolytic inhibitor, dichloroacetate-treated mice. Genetic and pharmacological approaches were used to explicate the role of metabolic reprogramming in myofibroblast differentiation. Hypoxia significantly enhanced transforming growth factor-ß-induced myofibroblast differentiation through HIF-1α, whereas overexpression of the critical HIF-1α-mediated glycolytic switch, pyruvate dehydrogenase kinase 1 (PDK1) was sufficient to activate glycolysis and potentiate myofibroblast differentiation, even in the absence of HIF-1α. Inhibition of the HIF-1α/PDK1 axis by genomic deletion of Hif1A or pharmacological inhibition of PDK1 significantly attenuated bleomycin-induced pulmonary fibrosis. Our findings suggest that HIF-1α/PDK1-mediated glycolytic reprogramming is a critical metabolic alteration that acts to promote myofibroblast differentiation and fibrotic progression, and demonstrate that targeting glycolytic metabolism may prove to be a potential therapeutic strategy for the treatment of pulmonary fibrosis.


Subject(s)
Cell Hypoxia/physiology , Dichloroacetic Acid/pharmacology , Glycolysis/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pulmonary Fibrosis/pathology , Animals , Bleomycin , Cell Line , Humans , Lung/pathology , Mice , Mice, Knockout , Myofibroblasts/cytology , Myofibroblasts/pathology , Protein Serine-Threonine Kinases/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , RNA Interference , RNA, Small Interfering/genetics
9.
Biomol Ther (Seoul) ; 26(1): 10-18, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29212302

ABSTRACT

Tumors are dynamic metabolic systems which highly augmented metabolic fluxes and nutrient needs to support cellular proliferation and physiological function. For many years, a central hallmark of tumor metabolism has emphasized a uniformly elevated aerobic glycolysis as a critical feature of tumorigenecity. This led to extensive efforts of targeting glycolysis in human cancers. However, clinical attempts to target glycolysis and glucose metabolism have proven to be challenging. Recent advancements revealing a high degree of metabolic heterogeneity and plasticity embedded among various human cancers may paint a new picture of metabolic targeting for cancer therapies with a renewed interest in glucose metabolism. In this review, we will discuss diverse oncogenic and molecular alterations that drive distinct and heterogeneous glucose metabolism in cancers. We will also discuss a new perspective on how aberrantly altered glycolysis in response to oncogenic signaling is further influenced and remodeled by dynamic metabolic interaction with surrounding tumor-associated stromal cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...