Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
3.
Nat Chem Biol ; 17(10): 1065-1074, 2021 10.
Article in English | MEDLINE | ID: mdl-34168367

ABSTRACT

The clinical benefits of pan-mTOR active-site inhibitors are limited by toxicity and relief of feedback inhibition of receptor expression. To address these limitations, we designed a series of compounds that selectively inhibit mTORC1 and not mTORC2. These 'bi-steric inhibitors' comprise a rapamycin-like core moiety covalently linked to an mTOR active-site inhibitor. Structural modification of these components modulated their affinities for their binding sites on mTOR and the selectivity of the bi-steric compound. mTORC1-selective compounds potently inhibited 4EBP1 phosphorylation and caused regressions of breast cancer xenografts. Inhibition of 4EBP1 phosphorylation was sufficient to block cancer cell growth and was necessary for maximal antitumor activity. At mTORC1-selective doses, these compounds do not alter glucose tolerance, nor do they relieve AKT-dependent feedback inhibition of HER3. Thus, in preclinical models, selective inhibitors of mTORC1 potently inhibit tumor growth while causing less toxicity and receptor reactivation as compared to pan-mTOR inhibitors.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Design , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Breast Neoplasms/drug therapy , Cell Line, Tumor , Female , Gene Expression Regulation/drug effects , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Structure-Activity Relationship
4.
Nat Cell Biol ; 20(9): 1064-1073, 2018 09.
Article in English | MEDLINE | ID: mdl-30104724

ABSTRACT

Oncogenic alterations in the RAS/RAF/MEK/ERK pathway drive the growth of a wide spectrum of cancers. While BRAF and MEK inhibitors are efficacious against BRAFV600E-driven cancers, effective targeted therapies are lacking for most cancers driven by other pathway alterations, including non-V600E oncogenic BRAF, RAS GTPase-activating protein (GAP) NF1 (neurofibromin 1) loss and oncogenic KRAS. Here, we show that targeting the SHP2 phosphatase (encoded by PTPN11) with RMC-4550, a small-molecule allosteric inhibitor, is effective in human cancer models bearing RAS-GTP-dependent oncogenic BRAF (for example, class 3 BRAF mutants), NF1 loss or nucleotide-cycling oncogenic RAS (for example, KRASG12C). SHP2 inhibitor treatment decreases oncogenic RAS/RAF/MEK/ERK signalling and cancer growth by disrupting SOS1-mediated RAS-GTP loading. Our findings illuminate a critical function for SHP2 in promoting oncogenic RAS/MAPK pathway activation in cancers with RAS-GTP-dependent oncogenic BRAF, NF1 loss and nucleotide-cycling oncogenic KRAS. SHP2 inhibition is a promising molecular therapeutic strategy for patients with cancers bearing these oncogenic drivers.


Subject(s)
Biomarkers, Tumor/genetics , Guanosine Triphosphate/metabolism , Mutation , Neoplasms/enzymology , Neoplasms/genetics , Neurofibromin 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Genetic Predisposition to Disease , HEK293 Cells , Humans , Mice, Inbred BALB C , Mice, Nude , Mitogen-Activated Protein Kinase Kinases/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Phenotype , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , SOS1 Protein/metabolism , Signal Transduction , Tumor Burden/drug effects , Xenograft Model Antitumor Assays , raf Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...