Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Plant J ; 117(5): 1330-1343, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37996996

ABSTRACT

Plants and bacteria have distinct pathways to synthesize the bioactive vitamin B1 thiamin diphosphate (TDP). In plants, thiamin monophosphate (TMP) synthesized in the TDP biosynthetic pathway is first converted to thiamin by a phosphatase, which is then pyrophosphorylated to TDP. In contrast, bacteria use a TMP kinase encoded by ThiL to phosphorylate TMP to TDP directly. The Arabidopsis THIAMIN REQUIRING2 (TH2)-encoded phosphatase is involved in TDP biosynthesis. The chlorotic th2 mutants have high TMP and low thiamin and TDP. Ectopic expression of Escherichia coli ThiL and ThiL-GFP rescued the th2-3 mutant, suggesting that the bacterial TMP kinase could directly convert TMP into TDP in Arabidopsis. These results provide direct evidence that the chlorotic phenotype of th2-3 is caused by TDP rather than thiamin deficiency. Transgenic Arabidopsis harboring engineered ThiL-GFP targeting to the cytosol, chloroplast, mitochondrion, or nucleus accumulated higher TDP than the wild type (WT). Ectopic expression of E. coli ThiL driven by the UBIQUITIN (UBI) promoter or an endosperm-specific GLUTELIN1 (GT1) promoter also enhanced TDP biosynthesis in rice. The pUBI:ThiL transgenic rice accumulated more TDP and total vitamin B1 in the leaves, and the pGT1:ThiL transgenic lines had higher TDP and total vitamin B1 in the seeds than the WT. Total vitamin B1 only increased by approximately 25-30% in the polished and unpolished seeds of the pGT1:ThiL transgenic rice compared to the WT. Nevertheless, these results suggest that genetic engineering of a bacterial vitamin B1 biosynthetic gene downstream of TMP can enhance vitamin B1 production in rice.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Ectopic Gene Expression , Thiamine/metabolism , Thiamine Pyrophosphate/genetics , Thiamine Pyrophosphate/metabolism , Thiamine Monophosphate/metabolism , Phosphoric Monoester Hydrolases/metabolism , Bacteria/metabolism , DNA-Binding Proteins/genetics
2.
Plant Physiol ; 192(2): 1532-1547, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36843191

ABSTRACT

Nutrient sensing and signaling are critical for plants to coordinate growth and development in response to nutrient availability. Plant ACT DOMAIN REPEAT (ACR) proteins have been proposed to serve as nutrient sensors, but their functions remain largely unknown. Here, we showed that Arabidopsis (Arabidopsis thaliana) ACR9 might function as a repressor in glucose (Glc) signaling pathways. ACR9 was highly expressed in the leaves, and its expression was downregulated by sugars. Interestingly, the acr9-1 and acr9-2 T-DNA insertion mutants were hypersensitive to Glc during seedling growth, development, and anthocyanin accumulation. Nitrogen deficiency increased the mutants' sensitivity to Glc. The expression of sugar-responsive genes was also significantly enhanced in the acr9 mutants. By contrast, the 35S:ACR9 and 35S:ACR9-GFP overexpression (OE) lines were insensitive to Glc during early seedling development. The Glc signaling pathway is known to interact with the plant hormone abscisic acid (ABA). Notably, the acr9 mutants were also hypersensitive to ABA during early seedling development. The Glc sensor HEXOKINASE1 (HXK1) and the energy sensor SUCROSE NON-FERMENTING1 (SNF1)-RELATED PROTEIN KINASE1 (SnRK1) are key components of the Glc signaling pathways. The acr9-1/hxk1-3 and acr9-1/snrk1 double mutants were no longer hypersensitive to Glc, indicating that functional HXK1 and SnRK1 were required for the acr9-1 mutant to be hypersensitive to Glc. Together, these results suggest that ACR9 is a repressor of the Glc signaling pathway, which may act independently or upstream of the HXK1-SnRK1 signaling module.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Glucose/metabolism , Arabidopsis Proteins/metabolism , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Signal Transduction/physiology , Gene Expression Regulation, Plant , Protein Serine-Threonine Kinases/metabolism
3.
Plant J ; 111(5): 1383-1396, 2022 09.
Article in English | MEDLINE | ID: mdl-35791282

ABSTRACT

The THIAMIN REQUIRING2 (TH2) protein comprising a mitochondrial targeting peptide followed by a transcription enhancement A and a haloacid dehalogenase domain is a thiamin monophosphate (TMP) phosphatase in the vitamin B1 biosynthetic pathway. The Arabidopsis th2-3 T-DNA insertion mutant was chlorotic and deficient in thiamin diphosphate (TDP). Complementation assays confirmed that haloacid dehalogenase domain alone was sufficient to rescue the th2-3 mutant. In pTH2:TH2-GFP/th2-3 complemented plants, the TH2-GFP was localized to the cytosol, mitochondrion, and nucleus, indicating that the vitamin B1 biosynthetic pathway extended across multi-subcellular compartments. Engineered TH2-GFP localized to the cytosol, mitochondrion, nucleus, and chloroplast, could complement the th2 mutant. Together, these results highlight the importance of intracellular TMP and thiamin trafficking in vitamin B1 biosynthesis. In an attempt to enhance the production of thiamin, we created various constructs to overexpress TH2-GFP in the cytosol, mitochondrion, chloroplast, and nucleus. Unexpectedly, overexpressing TH2-GFP resulted in an increase rather than a decrease in TMP. While studies on th2 mutants support TH2 as a TMP phosphatase, analyses of TH2-GFP overexpression lines implicating TH2 may also function as a TDP phosphatase in planta. We propose a working model that the TMP/TDP phosphatase activity of TH2 connects TMP, thiamin, and TDP into a metabolic cycle. The TMP phosphatase activity of TH2 is required for TDP biosynthesis, and the TDP phosphatase activity of TH2 may modulate TDP homeostasis in Arabidopsis.


Subject(s)
Arabidopsis , Thiamine , Arabidopsis/genetics , Arabidopsis/metabolism , DNA-Binding Proteins/metabolism , Diphosphates/metabolism , Homeostasis , Phosphoric Monoester Hydrolases/metabolism , Thiamine/metabolism , Thiamine Pyrophosphate/metabolism
4.
RNA Biol ; 15(11): 1385-1391, 2018.
Article in English | MEDLINE | ID: mdl-30422048

ABSTRACT

Plant pentatricopeptide repeat (PPR) proteins are mostly involved in chloroplast or mitochondrial RNA metabolism. However, direct evidence that correction of the molecular defects in the organelles can restore the plant phenotypes has yet to be demonstrated in a ppr mutant. Arabidopsis slow growth3 (slo3), a ppr mutant, is impaired in the splicing of mitochondrial nad7 intron 2. Here, we have used slo3 as an example to demonstrate that transformation of correctly spliced nad7 into the nuclear genome and targeting the Nad7 subunit into mitochondria can restore complex I activity and plant phenotypes in the mutant. These results provide direct evidence that the strong growth and developmental phenotypes of the slo3 mutant are caused by defects in mitochondrial nad7.


Subject(s)
Arabidopsis Proteins/genetics , Electron Transport Complex I/genetics , Mitochondrial Proteins/genetics , NADH Dehydrogenase/genetics , RNA Splicing Factors/genetics , RNA, Mitochondrial/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant/genetics , Introns/genetics , RNA Splicing/genetics , RNA, Mitochondrial/metabolism
5.
Sci Rep ; 8(1): 11851, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30087396

ABSTRACT

The ACT domain (aspartate kinase, chorismate mutase and TyrA), an allosteric effector binding domain, is commonly found in amino acid metabolic enzymes. In addition to ACT domain-containing enzymes, plants have a novel family of ACT domain repeat (ACR) proteins, which do not contain any recognizable catalytic domain. Arabidopsis has 12 ACR proteins, whose functions are largely unknown. To study the functions of Arabidopsis ACR11, we have characterized two independent T-DNA insertion mutants, acr11-2 and acr11-3. RNA gel-blot analysis revealed that the expression of wild-type ACR11 transcripts was not detectable in the acr11 mutants. Interestingly, a lesion-mimic phenotype occurs in some rosette leaves of the acr11 mutants. In addition, high levels of reactive oxygen species (ROS), salicylic acid (SA), and callose accumulate in the mutant leaves when grown under normal conditions. The expression of several SA marker genes and the key SA biosynthetic gene ISOCHORISMATE SYNTHASE1 is up-regulated in the acr11 mutants. Furthermore, the acr11 mutants are more resistant to the infection of bacterial pathogen Pseudomonas syringae pathovar tomato DC3000. These results suggest that ACR11 may be directly or indirectly involved in the regulation of ROS and SA accumulation, which in turn modulates SA-associated defense responses and disease resistance in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Plant Diseases/genetics , RNA Nucleotidyltransferases/metabolism , Reactive Oxygen Species/metabolism , Salicylic Acid/metabolism , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Mutation , Oxidation-Reduction , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/microbiology , Plants, Genetically Modified , Pseudomonas syringae/physiology , RNA Nucleotidyltransferases/genetics
6.
Sci Rep ; 7(1): 16885, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29203827

ABSTRACT

Ammonium has long been used as the predominant form of nitrogen source for paddy rice (Oryza sativa). Recently, increasing evidence suggests that nitrate also plays an important role for nitrogen acquisition in the rhizosphere of waterlogged paddy rice. Ammonium and nitrate have a synergistic effect on promoting rice growth. However, the molecular responses induced by simultaneous treatment with ammonium and nitrate have been less studied in rice. Here, we performed transcriptome analysis to identify genes that are rapidly regulated by ammonium nitrate (1.43 mM, 30 min) in rice roots. The combination of ammonium and nitrate preferentially induced the expression of nitrate-responsive genes. Gene ontology enrichment analysis revealed that the early ammonium nitrate-responsive genes were enriched in "regulation of transcription, DNA-dependent" and "protein amino acid phosphorylation" indicating that some of the genes identified in this study may play an important role in nitrogen sensing and signaling. Several defense/stress-responsive genes, including some encoding transcription factors and mitogen-activated protein kinase kinase kinases, were also rapidly induced by ammonium nitrate. These results suggest that nitrogen metabolism, signaling, and defense/stress responses are interconnected. Some of the genes identified here may be involved in the interaction of nitrogen signaling and defense/stress-response pathways in plants.


Subject(s)
Gene Expression Regulation, Plant/drug effects , Nitrates/pharmacology , Oryza/genetics , Amino Acids/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Nitrogen/metabolism , Oryza/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Seedlings/drug effects , Seedlings/growth & development , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Plant J ; 91(1): 145-157, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28346710

ABSTRACT

Thiamin diphosphate (TPP, vitamin B1 ) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPPde novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-uidA activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were upregulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Thiamine/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Thiamine Pyrophosphate/metabolism
8.
Photosynth Res ; 127(2): 151-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26008795

ABSTRACT

Chloroplasts and mitochondria play important roles in maintaining metabolic and energy homeostasis in the plant cell. The interactions between these two organelles, especially photosynthesis and respiration, have been intensively studied. Still, little is known about the regulation of mitochondrial gene expression by chloroplasts and vice versa. The gene expression machineries in chloroplasts and mitochondria rely heavily on the nuclear genome. Thus, the interactions between nucleus and these organelles, including anterograde and retrograde regulation, have been actively investigated in the last two decades. Norflurazon (NF) and lincomycin (Lin) are two commonly used inhibitors to study chloroplast-to-nucleus retrograde signaling in plants. We used NF and Lin to block the development and functions of chloroplasts and examined their effects on mitochondrial gene expression, RNA editing and splicing. The editing of most mitochondrial transcripts was not affected, but the editing extents of nad4-107, nad6-103, and ccmFc-1172 decreased slightly in NF- and Lin-treated seedlings. While the splicing of mitochondrial transcripts was not significantly affected, steady-state mRNA levels of several mitochondrial genes increased significantly in NF- and Lin-treated seedlings. Moreover, Lin seemed to have more profound effects than NF on the expression of mitochondrial genes, indicating that signals derived from these two inhibitors might be distinct. NF and Lin also significantly induced the expression of nuclear genes encoding subunits of mitochondrial electron transport chain complexes. Thus, dysfunctional chloroplasts may coordinately up-regulate the expression of nuclear and mitochondrial genes encoding subunits of respiratory complexes.


Subject(s)
Arabidopsis/genetics , Chloroplasts/metabolism , Gene Expression Regulation, Plant/drug effects , Genes, Mitochondrial , Seedlings/genetics , Up-Regulation/genetics , Arabidopsis/drug effects , Arabidopsis/ultrastructure , Base Sequence , Chloroplasts/drug effects , Chloroplasts/ultrastructure , Introns/genetics , Lincomycin/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , Molecular Sequence Data , Photosynthesis/drug effects , Pyridazines/pharmacology , RNA Editing/genetics , RNA Splicing/drug effects , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Seedlings/drug effects , Seedlings/ultrastructure , Up-Regulation/drug effects
9.
Plant Signal Behav ; 10(10): e1071002, 2015.
Article in English | MEDLINE | ID: mdl-26237004

ABSTRACT

Mitochondria play an important role in maintaining metabolic and energy homeostasis in the plant cell. Thus, perturbation of mitochondrial structure and function will affect plant growth and development. Arabidopsis slow growth3 (slo3) is defective in At3g61360 that encodes a pentatricopeptide repeat (PPR) protein. Analysis of slo3 mitochondrial RNA metabolism revealed that the splicing of nad7 intron 2 is impaired, which leads to a dramatic reduction in complex I activity. So the SLO3 PPR protein is a splicing factor that is required for the removal of nad7 intron 2 in Arabidopsis. The slo3 mutant plants have obvious phenotypes with severe growth retardation and delayed development. The size of root apical meristem (RAM) is reduced and the production of meristem cells is decreased in slo3. Furthermore, the rosette leaves of slo3 are curled or crinkled, which may be derived from uneven growth of the leaf surface. The underlying mechanisms by which dysfunctional mitochondria affect these growth and developmental phenotypes have yet to be established. Nonetheless, plant hormone auxin is known to play an important role in orchestrating the development of RAM and leaf shape. It is possible that dysfunctional mitochondria may interact with auxin signaling pathways to regulate the boundary of RAM and the cell division arrest front during leaf growth in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Mitochondria/physiology , Mitochondrial Proteins/metabolism , Phenotype , Plant Leaves/metabolism , Plant Roots/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Cell Cycle Checkpoints , Gene Expression Regulation, Plant , Genes, Plant , Indoleacetic Acids/metabolism , Introns , Meristem/growth & development , Meristem/metabolism , Mitochondrial Proteins/genetics , Mutation , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Plant Leaves/growth & development , Plant Roots/growth & development , Plants, Genetically Modified , RNA Splicing , RNA Splicing Factors , RNA, Plant/metabolism , Seedlings , Signal Transduction
10.
Plant Physiol ; 168(2): 490-501, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25888618

ABSTRACT

Mitochondria play an important role in maintaining metabolic and energy homeostasis in the cell. In plants, impairment in mitochondrial functions usually has detrimental effects on growth and development. To study genes that are important for plant growth, we have isolated a collection of slow growth (slo) mutants in Arabidopsis (Arabidopsis thaliana). One of the slo mutants, slo3, has a significant reduction in mitochondrial complex I activity. The slo3 mutant has a four-nucleotide deletion in At3g61360 that encodes a pentatricopeptide repeat (PPR) protein. The SLO3 protein contains nine classic PPR domains belonging to the P subfamily. The small deletion in the slo3 mutant changes the reading frame and creates a premature stop codon in the first PPR domain. We demonstrated that the SLO3-GFP is localized to the mitochondrion. Further analysis of mitochondrial RNA metabolism revealed that the slo3 mutant was defective in splicing of NADH dehydrogenase subunit7 (nad7) intron 2. This specific splicing defect led to a dramatic reduction in complex I activity in the mutant as revealed by blue native gel analysis. Complementation of slo3 by 35S:SLO3 or 35S:SLO3-GFP restored the splicing of nad7 intron 2, the complex I activity, and the growth defects of the mutant. Together, these results indicate that the SLO3 PPR protein is a splicing factor of nad7 intron 2 in Arabidopsis mitochondria.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Introns/genetics , Mitochondria/enzymology , Mitochondrial Proteins/metabolism , NADH Dehydrogenase/genetics , RNA Splicing/genetics , Repetitive Sequences, Amino Acid , Amino Acid Sequence , Arabidopsis/cytology , Arabidopsis/enzymology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Base Sequence , Cell Proliferation , DNA, Complementary/genetics , Electron Transport Complex I/metabolism , Genes, Plant , Genetic Complementation Test , Green Fluorescent Proteins/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Molecular Sequence Data , Mutation/genetics , NADH Dehydrogenase/metabolism , Phenotype , Plant Roots , Protein Transport , RNA Editing , RNA Splicing Factors , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seedlings/metabolism
11.
Plant Signal Behav ; 10(2): e988072, 2015.
Article in English | MEDLINE | ID: mdl-25723575

ABSTRACT

4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), also known as isoprenoid synthesis H (IspH) or lysis-tolerant B (LytB), catalyzes the last step of the methylerythritol phosphate pathway to synthesize isopentenyl diphosphate and dimethylallyl diphosphate. The structure and reaction mechanism of IspH have been actively investigated in Escherichia coli but little is known in plants. Compared with the bacterial IspH, cyanobacterial and plant HDRs all contain an extra N-terminal conserved domain (NCD) that is essential for their function. Tyr72 in the NCD and several plant-specific residues around the central active site are critical for Arabidopsis HDR function. These results suggest that the structure and reaction mechanism of HDR/IspH may be different between plants and bacteria. The E. coli IspH is an iron-sulfur protein that is sensitive to oxygen. It is possible that the cyanobacterial HDR may independently evolve from the common ancestor of prokaryotes to obtain the NCD, which may protect the enzyme from high concentration of oxygen during photosynthesis.


Subject(s)
Conserved Sequence , Oxygen/metabolism , Photosynthesis , Plants/enzymology , Amino Acid Sequence , Erythritol , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Molecular Sequence Data , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Protein Structure, Tertiary , Structure-Activity Relationship
12.
Plant Physiol ; 166(1): 57-69, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25037211

ABSTRACT

The plant 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE (HDR) catalyzes the last step of the methylerythritol phosphate pathway to synthesize isopentenyl diphosphate and its allyl isomer dimethylallyl diphosphate, which are common precursors for the synthesis of plastid isoprenoids. The Arabidopsis (Arabidopsis thaliana) genomic HDR transgene-induced gene-silencing lines are albino, variegated, or pale green, confirming that HDR is essential for plants. We used Escherichia coli isoprenoid synthesis H (Protein Data Bank code 3F7T) as a template for homology modeling to identify key amino acids of Arabidopsis HDR. The predicted model reveals that cysteine (Cys)-122, Cys-213, and Cys-350 are involved in iron-sulfur cluster formation and that histidine (His)-152, His-241, glutamate (Glu)-242, Glu-243, threonine (Thr)-244, Thr-312, serine-379, and asparagine-381 are related to substrate binding or catalysis. Glu-242 and Thr-244 are conserved only in cyanobacteria, green algae, and land plants, whereas the other key amino acids are absolutely conserved from bacteria to plants. We used site-directed mutagenesis and complementation assay to confirm that these amino acids, except His-152 and His-241, were critical for Arabidopsis HDR function. Furthermore, the Arabidopsis HDR contains an extra amino-terminal domain following the transit peptide that is highly conserved from cyanobacteria, and green algae to land plants but not existing in the other bacteria. We demonstrated that the amino-terminal conserved domain was essential for Arabidopsis and cyanobacterial HDR function. Further analysis of conserved amino acids in the amino-terminal conserved domain revealed that the tyrosine-72 residue was critical for Arabidopsis HDR. These results suggest that the structure and reaction mechanism of HDR evolution have become specific for oxygen-evolving photosynthesis organisms and that HDR probably evolved independently in cyanobacteria versus other prokaryotes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Oxidoreductases/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Conserved Sequence , Cyanobacteria/enzymology , Diphosphates/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Silencing , Molecular Docking Simulation , Molecular Sequence Data , Oxidoreductases/chemistry , Oxidoreductases/genetics , Plants, Genetically Modified , Sequence Analysis, DNA , Structural Homology, Protein , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...